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Promotor:

prof. dr. F.W. Vaandrager

Manuscriptcommissie:

prof. dr. J.J.M. Hooman

prof. dr. B. Jonsson (Uppsala Universitet, Zweden)

prof. dr. F. Howar (Technische Universität Dortmund, Duitsland)

dr. G. Alpár (Open Universiteit)

dr. S. Verwer (Technische Universiteit Delft)





+—–



Acknowledgements

If there is one thing my PhD endeavor has taught me, is that it takes many people

to make a thesis. Hence, before diving into the actual content I want to thank the

people that were ever so essential in seeing me through this journey.

I first want to thank my supervisor, Frits, for guiding me over the duration of my PhD.

Without hesitation, you are the best supervisor I could have hoped for. Your analytical

thinking, clear exposition and enthusiasm provided a model for me to follow. Your

guidance steered me towards challenging yet interesting and (often) fruitful trails. Your

support never waned, even in times of unmet deadlines and broken expectations. Most

importantly, I am grateful for the interest you give to the progress of all the students

you mentor. I have no doubt that your supervision will see through completion of

many future theses.

I would also like to thank the people without whom the PhD journey could not have

happened.

Ioana was my supervisor for both my Bachelor’s and Master’s theses, with the latter

providing a bridge to my doctoral research topic. Ioana, I am deeply thankful for your

guidance through that early period and for instilling in me the belief that I could

actually do a PhD. I was not a model student, yet you were a model supervisor.
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Summary

Network protocols have become deeply ingrained into our everyday lives. Each form of

internet communication involves a series of protocols, as do many of the applications

we have come to use. These applications include web browsers and servers, mail

clients, chat programs, etc. Note how these applications communicate with each other

to provide a desired service. A web browser for example, communicates with a web

server to retrieve a desired web page. It is this very communication that is governed

by protocols implemented in the applications’ software. Unsurprisingly, verifying that

these protocols are properly implemented is of crucial importance, especially when

security is considered. Performing such a verification is an arduous task, more so in a

black-box setting, where the protocol’s source code is not accessible. Let us expand on

some of the tasks required by testing techniques commonly used in verification.

Classical testing techniques require the constant manual maintenance of a large test

suite, and may fail to spot corner cases where implementations are wrong. Model-based

testing uses a model of the protocol to automatically generate tests. Unfortunately,

such a model is rarely provided by the protocol’s specification, so it needs to be manu-

ally constructed and maintained. The technique known as model learning can provide

significant relief, as it allows for the automatic generation of models from implementa-

tions. The models can then be checked against properties extracted from the protocol

specification. This can be done manually by inspecting the models, or automatically

via model checking. Either way, the tester’s task is greatly facilitated.

One goal of this work is to promote model learning as a viable technique for verifying,

or in broader terms, analyzing practical software such as protocol implementations. To

that end, in Chapters 2 and 3, we use model learning with abstraction to obtain models

of TCP and SSH implementations, respectively. We then perform model checking on

these models, in order to analyze the adherence of the learned implementations to the

corresponding protocol specifications. This analysis helps uncover various standard

violations and bugs.

Another goal is to ease verification of protocol implementations by improving model

learning techniques. The challenge posed is that while model learning techniques are
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useful, their application to verification is made difficult by the many restrictions they

impose on the system we want to verify. Such restrictions may require the system

to have parameter-less input/output interfaces, to be deterministic, or to have no

temporal dependencies. Overcoming these restrictions may not be possible, or may

involve significant manual work. The fewer the restrictions, the easier and wider

application of learning techniques becomes. So it is a goal of this work to lift some of

these restrictions by expanding or developing new learning techniques.

Many current learning algorithms require the system’s behavior to be completely

deterministic, and as a result, restrict systems from generating arbitrary, unrelated

values in outputs. This restriction greatly limits applicability of learning, as many

systems, particularly network protocols, output these values in the form of nonces,

sequence numbers and identifiers. Chapter 4 introduces an extension of a well-

known framework by which we largely lift this restriction. This extension and other

optimizations are integrated in Tomte, the learner implementing this framework, and

tested over a series of benchmarks.

Network protocols also commonly perform a wide range of arithmetic operations on

data, whereas learning algorithms typically limit these operations to assignments and

equality checks. A different learning framework provides means of supporting more

advanced operations. RALib, the framework’s implementation, supports equality

and inequality operations. In Chapter 5, we integrate into RALib extensions for

handling inequalities over sums with constants, as well as the extension developed in

Chapter 4. Integrating these extensions allows us to infer more detailed models of

TCP client implementations. Upon analyzing these models, we find bugs which were

made discoverable by the new extensions, and could not have been discovered in our

earlier experiments on TCP.

Chapters 4 and 5 shed light on more foundational problems. Active learning algorithms

are complex and often tied to the restrictions they impose. This makes them difficult

to extend, or to adapt for specific usage scenarios, such as learning a system that

cannot be reset. They also require optimization before they can be put to practice

due to inefficiencies in the traditional framework. Chapter 6 proposes a learning

framework based on SMT for confronting these problems. Within this framework,

learning algorithms are expressed by more compact logical formulas. This enables

quick prototyping of learning for even advanced formalisms. Breaking away from

the traditional framework, our framework also removes the need for optimization

and achieves high adaptability. We present extensions of our framework for various

formalisms and scenarios. We provide an open-source implementation and use it to

assess the framework’s effectiveness over a series of benchmarks.

Over the course of this thesis we explore different approaches for learning practical

systems. Research on each approach is supported by implementations, experiments or

case studies. Future work should evolve these approaches in order to further facilitate

and widen their application to practical systems. In doing so, it should make it possible

to verify even complex implementations with the simple click of a button.



Samenvatting

Netwerkprotocollen worden steeds belangrijker: bij elke vorm van internetcommunicatie

worden diverse protocollen gebruikt. Bij veelgebruikte applicaties, zoals webbrowsers,

e-mailclients en chatprogramma’s, zien we dat deze applicaties onderling communiceren

om een dienst te verlenen. De wijze waarop deze communicatie plaatsvindt, wordt

beschreven door protocollen, welke gëımplementeerd zijn in de applicaties. Het is

niet verwonderlijk dat het verifiëren of deze protocollen correct gëımplementeerd zijn,

erg belangrijk is. Helaas is dit verifiëren een zware taak, vooral in een black-box-

omgeving waarin de code niet beschikbaar is. Technieken van model-leren kunnen de

taak faciliteren. Deze technieken kunnen worden gebruikt om automatisch modellen

voor protocolimplementaties te genereren. Deze modellen kunnen dan handmatig of

automatisch gecontroleerd worden op eigenschappen, afgeleid van specificaties zoals

RFC’s.

Een van de doelen van dit proefschrift is om model-leren toe te passen bij het verifiëren

van protocolimplementaties. Hoofdstuk 2 en 3 staan in het teken van dit doel. Hierin

gebruiken wij model-leren met abstractie om modellen af te leiden van verschilende

implementaties van TCP en SSH. Vervolgens gebruiken we de model-check-technieken

om te analyseren of de implementaties zich aan de specificaties houden. Deze analyse

hielp bij het vinden van bugs. Echter was abstractie in beide case-studies door hand-

matige ”mapper”-componenten gëımplementeerd. Het maken van deze componenten

was tijdrovend.

Een ander doel is om model-leeralgoritmen te verbeteren zodat ze volledig automatisch

kunnen worden toegepast op echte systemen. Met dat doel introduceert Hoofdstuk 4

een uitbreiding op een bekend algoritme dat het mogelijk maakt om systemen te

leren die willekeurige waarden genereren als uitvoer. De meeste model-leeralgoritmen

beperken de operaties die in een systeem zijn toegestaan tot testen van gelijkheid

en toekenningen. Er is echter ook een leeralgoritme dat geavanceerde operaties

ondersteunt. RALib is een implementatie van dit algoritme. Het ondersteunt zowel

testen van gelijkheid als ongelijkheid. In Hoofdstuk 5, voegen wij de ondersteuning
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van optellingen met constanten aan RALib toe. Daarna hebben wij RALib gebruikt

om getailleerde modellen te genereren voor implementaties van TCP. Analyse van

deze modellen bracht twee fouten aan het licht.

Een probleem met de geavenceerde model-leeralgoritmen zoals die van Hoofdstuk 5

is dat zij moeilijk zijn om aan te passen en te optimaliseren. In hoofdstuk 6 geven

we een alternatief leerraamwerk, gebaseerd op SMT, om dit probleem aan te pakken.

In dit raamwerk kunnen model-leeralgoritmen worden uitgedrukt door compactere

logische formules. Dit maakt snelle prototyping van algoritmen met geavanceerde for-

malismen mogelijk. Bovendien vereist ons raamwerk geen optimisatie. Wij presenteren

uitbreidingen van ons raamwerk voor verschillende formalismen en scenario’s. Deze

uitbreidingen implementeren wij in een open-source tool. We hebben de effectiviteit

van ons raamwerk beoordeeld door deze tool te benchmarken.

Dit proefschrift onderzoekt verschillende benaderingen voor het genereren van modellen

voor praktische systemen met behulp van model-leren. Deze benaderingen moeten in

de toekomst verder ontwikkeld worden. Alleen dan is het mogelijk om systemen te

verifiëren door eenvoudig op een knop te drukken.
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Chapter 1

Introduction

People are becoming increasingly reliant on protocols. Whether it’s drawing money

from an ATM or purchasing from a vending machine, our interactions with automated

systems follow some form of protocol these systems implement. Indeed, a protocol

can be seen as the set of rules which govern our interaction with these systems. These

rules define the format and order of messages exchanged with the machines, as well as

any action they take on the receiving/sending of each message. The rules forming a

protocol are defined in the protocol’s specification.

To give an example of such rules, a banking protocol is likely to direct an ATM to

only display a balance screen if the user has entered a valid PIN. Similarly, a vending

machine’s underlying protocol is likely to direct the machine to only issue a product

if the user has both pressed a button and inserted a coin. Viewing the insertion of

a coin, press of a button and issue of a product, as separate messages we describe

in Figure 1.1 normal and abnormal scenarios of interaction between the user and

vending machine. By giving the user a free soda, the vending machine deviates from its

protocol and costs its maintainers the price of a soda. Failure of systems to correctly

implement their respective protocols can lead to problems whose cost far exceeds that

of a soda.

The protocols described so far involve people’s interaction with machines. Network

protocols differ in that the interacting entities are solely hardware or software com-

ponents. To give an example, let us consider what happens when we access some

Figure 1.1: Various scenarios of interaction



2 1. Introduction

arbitrary web page. To open the web page in our browser, we first type in the link

referring to that web page and press ’Enter’. Our browser then sends a request message

(or a GET message) to some remote web server asking it for the web page at the given

link. The server receives this request, looks up the link in its resource folders, and

transmits back a response message containing the web page content or an appropriate

error. Our browser receives the content or an error, and displays it nicely on screen.

The mechanism of requesting and providing these textual resources between clients

(our browser) and servers (the remote server contacted) is governed by the HTTP

protocol.

This is just one example. The simple transfer of data involved in an HTTP interaction

relies on many other protocols. All these protocols are included in the TCP/IP protocol

suite, the suite whose protocols govern all forms of interaction over the Internet. Many

of these protocols are implemented in our operating systems today. Some are used by

popular applications such as Skype, web browsers like Google Chrome or Microsoft

Edge, mail clients like Thunderbird or Microsoft Outlook and so on. It is outside the

scope of this thesis to delve into the details of this suite, or indeed, into its constituent

protocols, hence we refer to [134] for more details.

As in the ATM and vending machine examples, it would be highly problematic if the

HTTP implementations of the browser or server would not meet the HTTP protocol’s

specification. Imagine if our browser occasionally sent malformed requests. The

receiving server would then likely reply with error responses even if we supplied valid

links, hindering our browsing experience. The consequence of such bugs can be much

more severe however. It is only recently that the Heartbleed vulnerability [103] was

discovered in a widely used implementation of TLS, the protocol designed to secure

traffic over the Internet. Exploiting this vulnerability allowed the theft of passwords

and other confidential information. It is said that an estimated 17% of the Internet’s

secure web servers were vulnerable at the moment of Heartbleed’s discovery [104]. More

thorough conformance testing could have prevented Heartbleed from happening [105].

But what is conformance testing?

Conformance testing is a branch of testing which sees that protocol implementations

meet their specifications. It therefore helps reduce the likelihood of these unwanted

scenarios. Conformance testing is a form of black-box testing, which means it checks

the external behavior of an implementation without referring to its internal structure.

This contrasts white-box testing, which additionally analyzes the program structure.

Comparing the two, black-box testing does not require access to the implementation’s

code, making it more widely applicable. Viewing the system as a black box also has

the advantage of decoupling testing from particularities of the actual implementation,

such as code structure or the programming language used. This makes testing possible

even without prior knowledge of the actual implementation.

There are many ways of performing conformance testing, with each offering a certain

degree of automation. Automation in turn reduces the work load of the tester, the

person involved in testing the implementation. Work in this thesis focuses on a
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conformance testing approach relying on model learning which provides a great degree

of automation and thus significantly reduces the burden on the tester.

1.1 Ways of Conformance Testing

Checking that implementations conform to their specifications is a classical problem.

It is hence unsurprising that many approaches have been developed to tackle it.

Perhaps the simplest approach one can adopt is to derive a set of tests from the

specification and run them on the implementation. A test compares the behavior of

the implementation to a series of stimulus (or inputs) to the one expected, as according

to its specification. Tests initially had to be run manually by the tester. Developments

in test methodologies (like keyword driven testing [128]), tools (like Selenium [185])

and frameworks (like JUnit [125]), have made it possible to more easily formulate tests,

execute them automatically and to even automatically trace the location of test failure

(see [70]). Nevertheless, a problem left unsolved is that a large number of tests have

to be manually derived and maintained. This in itself is costly. It is also questionable

whether manually written tests cover the corner cases of a specification.

In light of these shortcomings, model-based testing [47] has been proposed as a new

form of conformance testing which automates both generation and execution of tests

based on the model of the specification. This model is a formal description of the

expected behavior according to the specification. Assuming the model covers all

important aspects of the specification, this form of testing can provide high confidence

that the implementation, indeed, adheres to its specifications. There are a wide range

of tools designed for model-based testing (e.g. Conformiq [71], GraphWalker [97]...).

Unfortunately, their application, as is the application of model-based testing in general,

is limited by the existence of a suitable model. Specifications are generally textual,

even for protocols or other important systems. They do not normally include a

formalized model, and if they do, the model generally describes the system at a high

level in terms of its normal usage, leaving abnormal usage out. Deriving an adequate

model from a specification is therefore far from trivial. And like tests in the previous

approach, this model also has to be continuously maintained.

The approach this thesis follows leverages model learning [19, 170,205] to lift the need

of providing a model. Model learning is a technique which given a black-box system,

can automatically generate (or infer) a model corresponding to the system’s behavior.

This combined with model checking [23], a technique enabling the automated checking

of models against formal properties, should ideally reduce the manual task of a tester to

that of formalizing a set of properties from the protocol specification. While protocol

specifications don’t generally include models, most do formulate a series of requirement

statements describing expected behavior (MUST, SHOULD, MAY statements [45]).

This lends itself well to the presented approach, as each statement can be encoded in

a formal property, which is then verified by performing model checking on the inferred

model.
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1.2 Research Challenges

A combination of model learning and model checking would appear to provide a

near-automated test approach. Unfortunately, challenges in both techniques prevent

this appearance from translating to the real world. This work focuses on the learning

challenges. That’s not to say model checking is free of challenges, on the contrary,

state explosion is an active line of research [69]. Currently, however, all that can

be learned can be model checked, while the converse is far from true, giving further

motivation for our direction.

Perhaps the biggest challenge in model learning comes in the form of the many

unrealistic restrictions the technique imposes on the system it is applied to (the system

should be simple enough for learning to work). Overcoming these restrictions, if even

possible, may require limiting testing to only a subset of the system’s functions, or may

require a significant amount of manual work, greatly reducing the applicability of model

learning. Examples of these restrictions include requiring the system to give the same

responses when receiving the same messages (determinism), to be time independent,

or implement a reset function. It is a challenge of this work to lift or weaken some

of these restrictions, thus making model learning more applicable. More specifically,

our work tackles restrictions which prevent systems from generating non-deterministic

(e.g. random) values in outputs, and also limit their internal operations to equality

checks and assignments. Protocols in particular, do generate non-deterministic values

and also implement other arithmetic operations.

Another challenge lies in the development of adaptable learning frameworks that can

readily support advanced formalisms. Learning algorithms for advanced formalisms

are complex and difficult to adapt. They are often tightly bound to the restrictions

they impose on the system. Moreover, they can suffer from a blow-up in the number of

tests needed due to inefficiencies relating to counterexamples inherent to the classical

learning framework. This hinders their applicability to real software. Having this in

mind, we propose a framework which, by leveraging SMT solvers, facilitates prototyping

of learning for even advanced formalisms. The framework also enables easy adaptations

to scenarios in which many other learning approaches are impractical. Such scenarios

are when the system cannot be reset, or when only logs of its operation are available.

Finally, our framework is free of the inefficiencies affecting the classical framework.

Unsurprisingly, benchmarks show it to be competitive with even advanced learning

algorithms.

While widening the scope of learning is important, equally important is showing that

model learning is a viable strategy for conformance testing (it can help discover bugs

or inconsistencies). To that end, we show the usefulness of model learning through

case studies on two widely used protocols, TCP and SSH.
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1.3 Formalisms for Modeling Software Behavior

As our testing approach involves models, we touch on the formalisms for modeling

software behavior featured in this work. With this purpose in mind we define two

conceptual client-server protocols, A and B. We then use variations of Finite State

Machines (FSMs) to model servers of both protocols. We end by outlining some key

characteristics of the models.

Protocol A allows a client to connect and send messages to a server. The server

ignores any messages prior to a connection. The server acknowledges, by way of

acknowledgement messages, the first connection attempt and any messages sent after-

ward. The server accepts at most one connection and ignores any further connection

attempts.

s1

start

s2
connect/ack

msg/ignore

connect/ignore

msg/ack

Figure 1.2: Mealy machine model for Protocol A

A server for Protocol A can be modeled adequately by a Mealy machine, as done in

Figure 1.2. Mealy machines are FSMs with states and transitions encoding abstract

inputs and outputs. Our model has two states (before and after a connection is

established), with two abstract inputs (for connecting and sending a message) and two

abstract outputs (for ignoring and acknowledging). These messages form the interface

(or alphabet) of our server. To give an interpretation of this model, suppose the server

receives a connect while in the initial state s1. The server then transitions to s2

and generates the output ack, acknowledging the client’s connection. Once in s2, the

server stays there, responding to any msg inputs by ack, and to any connect inputs

by ignore.

Protocol B is a refined version of A. It enhances the specification with aspects of

data flow. Both messages and acknowledgements now carry a sequence number.

Upon acknowledgement of a connection, an Initial Sequence Number (ISN), which is

randomly generated by the server, is communicated to the client. The server then only

acknowledges messages with sequence numbers in increasing order, starting from the

ISN. Any messages whose sequence numbers fall out of order are ignored. Moreover,

acknowledgements sent by the server have sequence numbers equal to those of the

messages they acknowledge.

A natural way of modeling servers for Protocol B is through Register Automata (RA).

Figure 1.3a gives an illustration of this. RAs are a variation of Extended Finite State

Machines (EFSM), and be can seen as expanded versions of Mealy machines. The
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s1

start

s2

connect(), true/
ack(f), seq:=f

msg(p), true/
ignore()

connect(), true/
ignore()

msg(p), p == seq/
ack(p), seq:=p + 1

msg(p),
p != seq/

ignore()

(a)

s1

start

s2

connect/
ack FRESH

msg INVALID/
ignore

connect/
ignore

msg VALID/
ack EQU

msg INVALID/
ignore

(b)

Figure 1.3: Concrete and abstract models for Protocol B. f as an output parameter

means the parameter is assigned a fresh value. In an update f refers to the fresh value.

interface of an RA (its inputs and outputs) is parameterized. Moreover, an RA can

store parameter values in state variables, and its transitions are extended to contain

guards and updates. A transition is fired only if its guard is satisfied, where a guard

is a predicate over the input parameters and state variables. Firing a transition

additionally executes any updates encoded in it. Outputs may also carry parameters

whose value is indicated symbolically by referring to input parameters in the transition,

state variables or arbitrary values. We refer to arbitrary values by fresh values.

For our example, suppose the server is in state s1 and receives connect from the client.

In reaction to the input, the server jumps to s2, initializes its state variable seq with a

fresh value, and communicates this value by packing it in an ack output. Thereafter,

it only acknowledges msg inputs with sequence numbers matching seq, and on each

acknowledgement it replicates the sequence number of the acknowledged message (i.e.

the value of p in msg is repeated in ack, hence the formulation ack(p)).

Modeling Protocol B’s server as a small Mealy machine is impractical if we consider a

large sequence number domain, as Mealy machines cannot model data flow and their

interface is abstract. However, using the notion of abstraction from [10] we can abstract

away from the sequence number parameter found in msg and ack messages. We do so

by remarking that after a client connects, there is only one valid sequence number

which is acknowledged by the server. All other numbers are invalid and ignored, as are

numbers in messages prior to a client’s connection. Moreover, the first ack generated

by the server carries a fresh value, whereas all other acks carry values equal to the

valid sequence number. Applying the parameter abstractions corresponding to these

remarks (i.e. valid, invalid, fresh, equal), we can model the protocol by the abstract

Mealy machine of Figure 1.3b. As seen in this example, abstractions provide a way

of confining the behavior of the modeled server within the constraints of a Mealy

machine.

We end by noting key characteristics of the models (and the servers they describe).

Protocol A’s model is deterministic, that is, for every sequence of inputs the model

generates a unique sequence of outputs. By contrast, Protocol B’s model is non-

deterministic in a concrete sense. This can be evidenced by the model’s response to
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the sequence of inputs connect() msg(10), which can prompt two different responses

depending on the value the model generates upon receiving connect() (i.e. if it

generates 10 or not). This non-determinism is caused solely by the arbitrary nature

in which a fresh value is generated. Abstracting away from this characteristic allows

us to produce a deterministic model, such as that in Figure 1.3b. We classify the

model in Figure 1.3a as an RA with fresh values. The ability to model fresh values

is essential in describing protocols, as many protocols generate them in the form of

nonces, identifiers or ISNs, in a similar way to Protocol B.

Protocol B’s model can also be described in terms of the arithmetics encoded in its

guard and updates. In that sense, we can characterize it as an RA with equalities

(noting equality and disequality predicates) and successors (noting the successor in

one update).

Finally, all models introduced thus far are transducers, as they generate an output on

every input. All models but the abstract one are also complete since their behavior is

defined for all inputs in every state. The abstract model is incomplete (the output for

msg VALID in s1 is undefined). A different class of models are acceptors, which for a

sequence of inputs, generate a single boolean output, which is either true or false.

This makes them suitable for describing languages, as the output captures inclusion

of a sequence of inputs (or word) to a language. The output is encoded in the state

reached: states can either be accepting or rejecting.

s1

start

s2 s3

s4 sink s5

connect ack

msgignore connect ignore

msg

*
*

*

* *

*

Figure 1.4: Protocol A as a DFA. Accepting states have two circles, rejecting states

have one.

For each state, ’*’ indicates all inputs/outputs without an outgoing transition from

the state.

Mealy machines are by definition transducers. The literature gives several definitions

for describing RA’s. Later chapters involving RAs (Chapters 4, 5 and 6) introduce their

own RA interpretation. Ultimately, a transducer can be described through an acceptor

at the expense of conciseness, by splitting each transition into two separate transitions,

connected by an output state. We then direct all uncovered transitions to a sink state,
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the acceptor’s only rejecting state. Figure 1.4 gives an acceptor representation for

Protocol A. The representation is known as a Deterministic Finite Automaton (DFA).

Modeling transducers as acceptors is done in both Chapters 5 and 6.

1.4 Model Learning Framework

Model learning allows inference of models from black-box systems. There are two

settings for model learning, an active setting, where inference is done by interaction

with a system under learning by exercising the system’s interface, and a passive

setting, where inference is done solely from a set of logs the system generated. Our

focus is on an active setting tailored towards the learning of (E)FSMs, like the Mealy

machines and RAs described earlier. This setting is also known as active automata

learning.

Figure 1.5: Active Model Learning Framework

Figure 1.5 sketches the model learning framework most commonly used in practice.

The framework involves three components, the system under learning (SUL), the

learner, a software component implementing a learning algorithm, and the tester, a

software component implementing a (typically model-based) testing algorithm.

The learner’s goal is to infer a model of the SUL. It does so in an iterative process,

by generating and running tests on the SUL. Each test encodes a sequence of inputs.

Upon running a test, the learner makes an observation of the SUL’s response. The

learner runs tests until it has made enough observations that it can build a hypothesis,

a behavioral model consistent with all observations made so far. This hypothesis is

sent to the tester, whose task is to check its validity. In case the hypothesis is invalid,

the tester may find a counterexample. A counterexample is a test which when run on

the SUL, results in a different observation than on the hypothesis. The tester gives

the counterexample to the learner, which uses it to generate new tests and eventually

come up with a refined hypothesis. The refined hypothesis is put through the same

process, which continues until a hypothesis is judged to be valid by the tester (no

counterexample was found), causing learning to terminate and return the hypothesis
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as the learned model of the SUL. The tester can optionally be configured to provide

a measurement of confidence in the learned model’s correctness, noting that in a

black-box setting, correctness can never be guaranteed.

While the SUL is traditionally viewed as a black-box (only its interface is known), the

framework can benefit from white-box techniques (that is, techniques which analyze the

SUL’s internal code). This is especially true with regards to testing, where white-box

approaches may ensure coverage of all the code’s statements or branches.

1.4.1 A Look Inside the Learner

How can a learner automatically infer a model of the SUL? Learning algorithms are

several, yet they all hinge on the discernible nature of states in a model. Concretely, for

any two states in a minimal model there are distinguishing sequences of inputs which,

if run from the respective states, will prompt different responses allowing us to tell

the states apart. Take Protocol A for example, states s1 and s2 can be distinguished

by the input connect which prompts ack in s1 but ignore in s2. It is important

to emphasize the attribute minimal when describing models. Non-minimal models

have equivalent states which cannot be distinguished. Our active learning setting is

concerned with generating minimal models.

Being able to distinguish states allows us to identify them by just accruing for each

state, the sequences that differentiate it from the rest. Moreover, it helps in determining

a prefix-closed set of access sequences, where each access sequence starting from the

start state, leads to a different state in the model. For Protocol A, the only possible

set is {ε,connect}, where ε is the empty sequence. We can verify that this set is

prefix-closed: ε has no prefixes, whereas connect has a single prefix in ε, which is

included in the set. Having these access sequences and a means of identifying states

allows us to construct a model by just checking how the SUL transitions upon receiving

each input after each of the access sequences.

These ideas lie at the core of active learning algorithms. Yet how they are implemented

varies. Typically learners encode both access sequences and distinguishing sequences in

an internal data structure. This data structure is completed with observations made by

running tests, until a hypothesis can be generated. Upon processing a counterexample,

the learner extracts new access/distinguishing sequences which it uses to update its

data structure.

The most common algorithms, including the renowned L∗ algorithm, log all tests in

an observation table. We will use the algorithm described in [198] as reference, though

all other table-based algorithms use a similar structure. The rows of an observation

table are labeled with prefixes, comprising access sequences (we denote by S) and their

one-input extensions (or S · I, where I is the input alphabet). The columns are labeled

with suffixes, comprising distinguishing sequences (we denote by D) and singleton

sequences for each input in the alphabet. Cells contain the last output generated by

running the test formed by concatenating a prefix with a suffix. A state is uniquely
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determined by the output configuration of a row. Different configurations signal that

the respective prefixes lead to different states.

Starting from minimal information (i.e. {ε} the set of access sequences and an empty

set of distinguishing sequences), new access sequences are added to the table along with

their corresponding extensions until the closedness condition is met. Under closedness,

output configurations of access sequences include output configurations of one-input

extensions. This intuitively suggests that all transitions from access sequences lead to

already established states. Closedness allows construction of a hypothesis.

We perform a learning run of this algorithm on an adapted version of Protocol A. This

version following two acknowledged msg inputs enters an unresponsive state wherein it

ignores all inputs. A model of the adapted protocol is displayed in Figure 1.6. Initially,

ε is our lone access sequence and we have no distinguishing sequences. We fill in

observations for ε and its one-input extensions msg and connect, and obtain Table 1.1.

We notice that the table is not closed as there is no access sequence row corresponding

to the output configuration of connect. This means connect leads to a new state,

thus should be added to the set of access sequences. We do so, and complete the table

again by adding new one-input extension entries, resulting in Table 1.2. This table is

closed, which allows us to build a hypothesis resembling Protocol A’s model.

connect msg

ε ack ignore

connect ignore ack

msg ack ignore

Table 1.1: Table not yet closed. D = ∅

S

S · I

I ∪D connect msg

ε ack ignore

connect ignore ack

msg ack ignore

connect connect ignore ack

connect msg ignore ack

Table 1.2: First closed table

While this hypothesis is consistent with Protocol A, it’s inconsistent with the adapted

version we are learning. Suppose the tester finds the counterexample connect msg

msg msg which produces as last output ignore on the SUL but ack on the hypothesis.

A counterexample traverses one or more undiscovered states which cannot be identified

using the current set of distinguishing sequences. The learner’s goal is to find a

non-empty counterexample suffix whose addition to the table makes it unclosed. By

doing so the suffix essentially enables the learner to distinguish a new state from

existing states and build a new hypothesis. We would also like this suffix to be the

shortest, since long suffixes lead to longer, more expensive tests. Hence we iterate the

suffixes of the counterexample from shortest to longest until we reach suffix which

makes the table unclosed1. For our example, this suffix is msg msg. The learner

adds it to the table as a new distinguishing sequence. The learner then proceeds to

run tests in order to close the table again. Table 1.3 encodes the end result. From

1Note that this is one of a variation of available strategies for processing counterexamples. Other

strategies involve adding multiple suffixes or adding prefixes instead. Also note that using the

proposed strategy a counterexample may still be a counterexample for the refined hypothesis.
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this, a hypothesis consistent with the adapted protocol is built. Henceforth, no new

counterexamples are found and learning finishes.

con msg msg msg

ε ack ignore ignore

con ignore ack ack

con msg ignore ack ignore

con msg msg ignore ignore ignore

msg ack ignore ignore

con con ignore ack ack

con msg con ignore ack ignore

con msg msg msg ignore ignore ignore

con msg msg con ignore ignore ignore

Table 1.3: Final table.

connect appears as con

s1

start

s2

s3s4

connect/ack

msg/ignore

connect/ignore

msg/ack

connect/ignore

msg/ack

connect/ignore

msg/ignore

Figure 1.6: Model for adapted Protocol A

Having just borne witness to a learning run, it’s important to restate that not all

learning algorithms use an observation table. Moreover, information encoded in suffixes

and prefixes may be different depending on the formalism learned, as will be the

information entered in a cell.

1.5 Model Learning Algorithms and Contributions

We shall now go over the learning algorithms and approaches relevant to this work.

We use this opportunity to also outline the main contributions.

1.5.1 Classical Learning

The seminal work of Angluin [19] introduced the foundation on which the framework

of Section 1.4 is based. It also introduced the L∗ learning algorithm, which allows

the inference DFAs. DFAs are formalisms used to represent languages. As seen

in Figure 1.4, DFAs can also be used to model reactive systems, which display

input/output behavior on each transition. Yet they lack conciseness compared to more

advanced formalisms, requiring more states to model the same behavior.

This motivated later works [164,187,198] to advance Angluin’s algorithm to the setting

of Mealy machines. New algorithms for Mealy machines have since been developed

with the goal of reducing the number of tests required to infer models. These include

the Observation Pack [116] and TTT [122], the later appearing particularly promising.
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Testing algorithms for Mealy machines have also been developed [92, 191], some of

which provide measurable confidence in the learned models.

1.5.2 Learning with Mappers

Mealy machines provide a conciser way of describing the input/output behavior of real

systems, but as shown in Section 1.3, they require abstraction to model parameterized

software exhibiting data flow. Work in [10] formally encodes this abstraction in a

mapper component, which is placed between the SUL and the learner. The mapper

confers to the learner an abstract representation of the SUL. An abstract Mealy

machine can be inferred, like the one shown for Protocol B in Figure 1.3b. By applying

the mapper’s inverted form on the abstract model we can then generate a concrete

model (like an RA). This procedure is also known as concretization of the abstract

model.

Contribution In Chapters 2 and 3 we use this approach to infer models of real

TCP and SSH implementations. We obtain models for various implementations with

a measurable degree of confidence attained by applying the testing algorithm in [191].

We then use model checking to verify these models against properties we formalize

from the protocols’ specifications, and find several standard violations.

The TCP and SSH case studies provide applications of learning with abstraction to

widely used protocol implementations. This distinguishes the TCP case study from

the work in [10], where the implementation of a TCP simulator was inferred. The

two case studies are also among the first to use a combination of model learning and

model checking to verify real-world protocol implementations.

In the SSH case study we learn and check SSH server implementations for OpenSSH,

BitVise and DropBear. In the TCP case study we learn and check TCP client and

server implementations for Windows 8, Linux and FreeBSD. Having obtained models

for both clients and servers, we connect them using the model of a loss-less network

and check properties concerning their interaction.

1.5.3 Learning with Automatically Generated Mappers

By using mappers an important limitation is lifted, however there is a significant

cost incurred. Constructing mappers is an arduous task which often requires deep

knowledge of the SUL. Work by Aarts et al. [2] shows that it is possible to construct

mappers automatically for a specific class of RAs. The approach hinges on the notion

that at any time, only a couple of values (so called memorable values) are remembered

by the SUL, and are relevant in exploring its future behavior. Parameter abstractions

can thus be formed based on relations with these values. Abstractions are refined

over the course of learning starting from an initial set of coarse abstractions. As new

relations with past values are discovered in counterexamples, new abstractions are
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encoded into the mapper. This approach falls under the more general approach of

Counterexample Generated Abstraction Refinement (CEGAR).

The approach of Aarts et al. was built into Tomte [201], which supports learning

RAs with equalities. Tomte’s architecture is displayed in Figure 1.7. The Learner

implements any active learning algorithm for Mealy machines. The Abstractor encodes

the evolving mapper component, tasked with translating between abstract and concrete

messages. The Lookahead Oracle is the component responsible with finding memorable

values. It passes concrete inputs along to the SUL, while adjoining to each concrete

output the set of memorable values in the current run. These are used by the

Abstractor to form corresponding output abstractions. Tomte’s decoupled nature

allows it to easily incorporate and leverage more advanced Mealy machine learners

like TTT.

Learner Abstractor
Lookahead

Oracle
Determinizer SUL

Figure 1.7: Tomte’s architecture. The Determinizer is its latest addition

Contribution Chapter 4 extends the work of Aarts et al. to settings allowing fresh

values (e.g. randomly generated SUL values). The non-deterministic nature of fresh

value generation makes them a problem for learning techniques, which require systems

to be deterministic. We combat this by formalizing a Determinizer component and

incorporating it in Tomte. The Determinizer acts like a mapper, and provides the

learner a deterministic concrete view of the SUL, by constructing and applying a

1 to 1 mapping from regular SUL values to ’neat values’. Under the action of the

Determinizer, the first fresh value (regardless of its actual value) is mapped to -1, the

second fresh value to -2 and so on. We show that learning the behavior of a SUL can

be done solely by analyzing its ’neat view’.

The extension to systems with fresh values is essential for the analysis of certain

protocols, as explained in Section 1.3. Chapter 4 also introduces a series of optimizati-

ons to Tomte. Among the most notable are connecting Tomte to the TTT learning

algorithm, and improving and streamlining counterexample analysis. We show gains

obtained from these optimizations over an extensive series of benchmarks involving

prior configurations of Tomte and RALib.

It should be noted that our approach is not the first to tackle the problem of fresh

values. The algorithm introduced by Bollig et al. [37] can also learn models with fresh

values, but these models are severely restricted relative to those we can learn. For

example, these models cannot describe a language which only accepts sequences of

parameterized inputs whose last two values are equal.
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1.5.4 Learning Systems with Tree Queries

Cassel et al. [53, 58] presents a different approach for learning RAs which incorporates

the handling of parameterized behavior into the learning algorithm. Their algorithm,

SL∗, utilizes tree queries in place of simple tests. A tree query comprises a concrete

prefix and a symbolic suffix. The algorithm poses tree queries to a tree oracle, which

answers them by generating Symbolic Decision Trees (SDT) describing the SUL’s

behavior after the prefix for the suffix. An SDT is a data structure which compactly

encodes observations made by running a large number of tests on the SUL. Each SDT

obtained running a tree query is stored into a tabled structure similar to L∗’s, in

the cell corresponding to the query’s concrete prefix and symbolic suffix. Closedness

checks are done by comparing SDTs in rows for equivalence.

SL∗

Algorithm
Tree

Oracle
SUL

tree query tests

observationsSDTs

Figure 1.8: RALib’s architecture

Canonical implementations of a tree oracle permit the generation of more succinct

(i.e. compact) models. The framework of Cassel et al. supports learning RAs with

advanced relations by providing canonical tree oracles for these relations. In [58],

Cassel et. al. formalize tree oracles for equalities and inequalities (involving the

<,> and = relations). They also give an intuition on how various combinations of

relations are handled, including inequalities over sums with constants. They then use

a prototype implementation to learn simple models of these combinations. Cassel

et al. [54] introduce RALib2, an open-source implementation of this approach which

supports equality and inequality relations.

Before discussing contributions, we give an intuition on the structure of SDTs, and

on how a tree oracle can be implemented. Figure 1.9 shows SDTs a tree oracle may

construct on a tree query with the concrete prefix connect ack(10) and symbolic

suffix msg(p) ack(p). An SDT symbolically describes all the instantiations of a suffix

that when appended to a prefix, form valid traces of the SUL. These instantiations

lead to accepting states in the SDT, whereas those forming invalid traces lead to

rejecting states. In the case of Protocol B, the suffix forms valid traces if the parameters

of msg and ack are equal to the parameter of ack in the prefix and its successor,

respectively.

To answer a tree query, a tree oracle as presented in Chapter 5 first generates a

maximally refined tree which explores all possible parameter configurations for the

suffix given the relations. In our example, we consider equality and successor relations.

Consequently, we have to explore cases when a suffix parameter is equal, the successor

2https://bitbucket.org/learnlib/ralib
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Figure 1.9: SDTs for prefix connect ack(10) and suffix msg(p) ack(p).

r1 refers to the first parameter in the prefix

or different, relative to previous parameters. This requires execution of three tests,

which may result in the concrete traces:

connect() ack(10) msg(10) ack(11) (equal)

connect() ack(10) msg(11) nok() (successor)

connect() ack(10) msg(20) nok() (different)

Note, that only the first trace ends in ack, and thus matches our suffix. All others

don’t, hence the cases they encode lead to rejecting states in the tree. For the matching

trace, the output value of this ack is a successor of the value of the previous ack. This

automatically invalidates similar traces whose last ack contains a value that is not a

successor.

Once it has built a maximally refined tree, the oracle compresses it into an equivalent

maximally abstract tree by merging equivalent subtrees and their respective branches,

and returns this tree as answer. This compression step is needed to ensure that

learning converges, and also to produce compact models. Notice that the SDT shown

in Figure 1.9a is maximally refined only in terms of its input parameters and is already

maximally abstract in terms of its output parameters. This was done to ease exposition

and also because producing maximally abstract subtrees for output parameters is

greatly simplified by the determinism requirement. This requirement means that

at most one refined output branch can lead to an accepting state, while all others

necessarily lead to rejecting states, allowing for their simple merger.

Contribution In Chapter 5, we extend RALib and use it to generate and check TCP

client implementations for FreeBSD and Linux. This is the first practical case study

involving an RA learner. We frame the case study within the learning-based testing

framework introduced by Meinke [151] (where learning is used as means of building tests

more likely to uncover problems). The case study produced detailed concrete models

with data that also captured abnormal scenarios. It also lead to the discovery of two
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new violations. Conducting experiments lead to the uncovering of a bug, whereby while

closing a data connection, the Linux TCP client processed and acknowledged certain

invalid segments. Uncovering the bug was made possible by the exploratory tests

learning involves. The bug was acknowledged and subsequently fixed by developers.

Analyzing the models we discover a different violation to the RFC regarding the size

of the receive window in TCP, acknowledged by the developers.

Getting RALib to the point where it could learn TCP involved several steps, some

of which are detailed in the chapter. First we provide an implementation of the tree

oracle for a setting of equalities and inequalities over sums with constants (Protocol B

would fit in such a setting). We then adapt the Determinizer concept developed in

Chapter 4 to this setting, and connect it to the framework. We also implement suffix

optimizations for these relations to make the approach more scalable.

The concept of suffix optimization was introduced in [57] for a setting of equalities,

but never implemented for our specific setting. This optimization involves annotating

the symbolic suffixes obtained from counterexamples, with the relations they capture

within the counterexample. The tree oracle only considers these relations when

processing tree queries with this suffix, instead of all enabled relations, leading to a

reduction in the number of tests needed to answer the tree query. To give a concrete

example, in Figure 1.9 knowing that we only have to test the parameter of msg for

equality (instead of also for successor) would reduce the number of tests from 3 to 2.

The reduction becomes (much) more pronounced once we consider more relations, or

suffixes and prefixes with more parameters.

1.5.5 An SMT-based Learning Framework

The last two approaches can, in theory, provide automated ways of generating models

for many practical systems. However, adapting both approaches to a broader class

of systems or learning scenarios is far from trivial. Take for example adaptations for

learning systems without resets or learning systems only from a set of logs. Such

adaptations would likely mean reconstruction of these approaches from the ground

up.

Adding to that, both approaches require a significant number of tests which grows

rapidly with increasing system complexity. This was particularly evident in the TCP

case study involving RALib, where the high number of tests meant we had to use

small input alphabets and could not learn server implementations. Poor scalablity is

caused in part by inefficiencies in the classical learning framework which arise when

processing counterexamples. Counterexamples driving the learning process often con-

tain complicating information, such as unnecessary inputs or confusing data relations.

Unnecessary inputs make counterexamples longer than needed. Confusing data relati-

ons make it difficult to identify those which are relevant from a counterexample. To

give a concrete example, consider a login system with register and login methods both

carrying a user ID and password as parameters. Also consider two counterexample

traces exercising the same functionality on the login system: (c1) register(0,0)
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ok() login(0,0) ok() and (c2) register(0,1) ok() login(0,1) ok(). (c1) con-

tains confusing data relations binding user IDs also to passwords, when in fact, it is

irrelevant that they are equal. By contrast, (c2) contains only the relevant relations

and is not confusing.

The presence of either unnecessary inputs or confusing data relations in counterex-

amples can adversely impact the performance of active learning algorithms, causing

them to run many more tests (and inputs) than necessary. To give an intuition of

the impact, imagine if in the learning run of Section 1.4 we would have found the

counterexample connect msg msg connect connect msg. Without further proces-

sing of this counterexample, we might have very well used the suffix msg connect

connect msg as a distinguishing sequence. This suffix has twice as many inputs as

the compact msg msg we used in the learning run, and thus leads to longer tests. The

suffix is made longer by two unnecessary connect inputs. Confusing data relations

hide away the relevant relations. In the context of tree queries, we want to optimize

suffix execution only considering relations that are relevant and not those that are

irrelevant (such as a user ID being equal to a password).

State-of-the-art algorithms such as TTT effectively tackle the problem of unnecessary

inputs for DFAs and Mealy machines. Yet the problem still plagues learners for more

advanced formalisms such as RAs. Chapter 4 provides a way of dealing with confusing

data relations by a disambiguation step in which all relations are tested, but this

procedure is very costly in terms of the number of tests required.

Contribution Chapter 6 proposes a framework based on Satisfiability Modulo

Theories (SMT [33]) which intrinsically avoids problems arising with counterexamples.

The underlining idea is to separate concerns between the learner and the tester. The

learner is no longer able to run tests, its task is reduced to that of generating a

hypothesis consistent with a set of observations. The tester is the one performing

tests. Counterexamples found by the tester are incorporated by the learner into more

refined hypotheses. As it no longer needs to run tests, the learner can also operate in

a passive setting, where from a set of logged observations, it can build a hypothesis.

By using what is effectively a passive learner in an active setting, we aim to answer

a more general question, namely, how does such an approach perform in practical

benchmarks compared to the classical active setting using active learning algorithms?

As the chapter shows, it is at least competitive.

The proposed framework uses SMT to implement the learner. More specifically,

counterexamples found by the tester are encoded into SMT constraints over the

functions comprising the formalism definition. The constraints are then supplied

to an SMT solver. From the solution provided, the learner generates a hypothesis

model which it sends to the tester. This approach benefits from the capacity of SMT

solvers to handle advanced arithmetic, which opens the door to the rapid prototyping

of learning for advanced formalisms. To that end, we formalize encodings for both

conventional FSMs such as DFAs and Mealy machines, and for advanced formalisms
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such as RAs with equality and fresh values. Our framework is also highly adaptable,

as shown in the provided adaptations to learning systems without resets. Additionally,

by removing from the learner the ability to run tests, learning performance is no longer

affected by complicating information in counterexamples.

We have implemented this framework in the open-source learning tool Z3GI3, and

have shown its effectiveness over a series of experiments, where we compare it to other

learners following the classical learning framework. Our tool implements an all purpose

learner, in the sense that, it can infer models for many formalisms, including DFAs,

Mealy machines, accepting/rejecting RAs and regular input/output RAs (termed

IORA in this chapter). It implements learning both actively and passively and can

also learn Mealy machines that cannot be reset. Moreover, our tool’s decoupled

architecture allows encodings to be swapped while the rest of the framework stays the

same, facilitating the probing of new encodings.

A setting similar to ours was previously introduced in [213], where the authors

connect a passive learner to a model-based tester, though their realization is markedly

different, provides no guarantees on the minimality of the learned model and can

only learn one specific formalism, in the form of Partial Labeled Transition Systems

(PLTS). We additionally compare our approach to the classical one over a series of

experiments.

Passive learning using SMT solvers is also not new. Neider et al. [161,162] propose

an SMT-based passive learning approach for FSMs using encodings similar to ours.

The approach is shown to be effective even when compared to more involving SAT-

based approaches. We improve upon this work adapting the SMT-based approach to

richer classes of automata. Moreover, we assess the effectiveness of such an approach

when used in an active way, by drawing comparison with classical active learning

approaches.

1.6 Related Work

This section gives an overview of works closely related to our area of research. We

attempt to group these works, noting that there is a varying degree of interrelation

between works of different groups, as there is between active model learning, testing,

reverse engineering and other fields.

1.6.1 Applications of Model Learning to Software Analysis

The idea to use model learning as means of analyzing software originates from work

by Peled et al. [170], who proposed a conformance testing approach combining model

learning via L∗ and model checking under the name black box checking. The concept

was further advanced and applied in [99]. Meinke et al. introduce a similar methodology

3https://gitlab.science.ru.nl/rick/z3gi/tree/lata/z3gi

https://gitlab.science.ru.nl/rick/z3gi/tree/lata/z3gi
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in [149,150] under the name learning-based testing. The overriding idea is to use model

learning as means of generating better tests, that is, tests that more likely detect non-

conformance to supplied specifications. Meinke et al. instantiate the learning-based

testing framework, along with specific learning algorithms, for formalisms including

first-order functions [149,150] and Kripke structures [151]. Subsequent work introduces

the tool LBTest which implements this methodology for Kripke structures [152]. The

tool connects the IKL learning algorithm [151] to the NuSMV model checker [165].

Given formal specifications and a black-box system, the tool produces True/False

verdicts for compliance to each specification.

Hagerer et al. [101] are the first to frame model learning in a practical setting. They

improve the testing of a telecommunications system by leveraging models obtained

for its components. Margaria et al. [147] later adapt and apply model learning to

derive models of the switch within this system. Model learning has since seen many

applications in the area of testing. Raffelt et al. [177] provide a proof of concept for

using learning to infer a renown bug tracking system and router [177]. Later work by

Windmüller et al. [220] leverages model learning in the regression testing of an editorial

system. In a similar case study, Schuts et al. [184] use model learning to improve a

new implementation of a Philips legacy control component. Khalili et al. [129] apply

model learning to the middleware of a robotic platform. The generated models are

then used for the verification of the platform’s control software.

Some applications involve security settings. Cho et al. [64] use model learning to

infer models of botnets. Analysis of these models uncovered a design flaw in the

MegaD botnet’s infrastructure. In subsequent work [63], they use the learning tool

MACE to analyze implementations of the SMB protocol and were able to find multiple

vulnerabilities. De Ruiter et al. [181] generate Mealy machines for different TLS

client and server implementation, and discover several implementation flaws which

prompted fixes by developers. Tappler at al. [200] infer models of five different broker

implementations of the MQTT protocol. They check the models by manually analyzing

traces (sequences of inputs/outputs) exposing differences between pairs of the learned

models, and find 18 bugs. Other applications of model learning include analysis of a

biometric passport [11], several EMV bank cards [3], hand-held readers [59], filter and

sanitizer programs [21,22,43], and web applications [24].

1.6.2 Algorithms for Learning Models with Data

Over the course of time, several active learning algorithms have been proposed for

inferring models with data. As the algorithms are varied, we describe them more in

terms of their restrictions and only occasionally expand upon their inner workings,

referring the reader to their corresponding references for details. We also discuss

passive learning approaches in closing.

Automata modeling data fit within the broader class of automata, namely, that of

automata with (possibly) infinite alphabets. Finite-memory automata [126] are among

the first formalisms developed within this class. They resemble a restricted class
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of acceptor RAs with equalities but no message names, which impose restrictions

on the way values are stored in registers, such as no two registers can store the

same values (we call this unique-valuedness). Finite-memory automata are also the

first automata with infinite alphabets for which an active learning algorithm was

developed. The algorithm of Sakamoto [182] ran iterations of L∗ with growing sets of

values until the set was large enough to capture the whole language. Each iteration

resulted in a DFA, which was subsequently translated to a corresponding finite-memory

automata. Scalability of the algorithm is worsened by it having to restart L∗ on each

counterexample processed. It is still, nevertheless, remarkable that learning for such

an expressive class of systems was formulated this early (the work dates back to 1997).

Unfortunately, as finite-memory automata were mainly meant as theoretical tools for

modeling and proving properties on languages with infinite alphabets, the algorithm

has seen limited use in practice.

The first learning algorithm for parameterized systems was introduced by Berg et

al. in [30] with the goal of learning protocol entities. The models learned were

parameterized, but did not have registers, parameters were restricted to boolean values

and only guards were allowed on transitions. Shahbaz and Li et al. [139, 186, 189]

remedied this through learning algorithms which supported parameterized systems

with unbounded parameter domains. The models inferred still did not have registers,

however, and had guards defined over state-local concrete values. Berg et al. in [31]

formalize the first algorithm capable of learning fully operational RAs with equalities.

Therein, a Mealy machine is first inferred using an alphabet flattened with a small

set of values. The machine is then condensed into an RA with equalities. While free

of any of the previous restrictions, the approach is hampered by the poor scalability

of learning with large alphabets. We can readily note similarities with prior work on

learning finite-memory automata.

Earlier attempts on using handcrafted abstractions for learning protocol simulations [9],

inspired works by Howar and Aarts et al. [7, 117] to formulate automated abstraction-

based algorithms for learning RAs with equalities and potentially unbounded parameter

domains. These algorithms automatically determine abstractions through iterations of

automated abstraction refinement. Isberner et al. [120] introduce the idea of state-local

abstractions, namely, that some abstractions are only relevant in certain states (for

example, logging in with a valid username is only relevant in states reached after

registering). The idea came in a context where previous approaches employed global

abstractions. A new learning algorithm is formulated based on this idea which produces

more succint models, while using fewer tests. Abstraction refinement also lies at the

core of the algorithm implemented in MACE [63], though that algorithm requires

manual specification of an output abstraction function.

Howar et al. [57,121] introduce an algorithm capable of inferring canonical and succint

acceptor RAs with equalities (or so called data languages). Canonicity provides a

unique form to all models expressing the same behavior, whereas succintness ensures the

capturing of behavior by a compact representation. The canonical form is formulated
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first in [55] for RAs with equalities, and later extended to RAs with binary relations [56].

The canonical form presented is succint, as it is free of restrictions normally imposed

on models with data, like unique-valuedness in the case of finite-memory automata.

Some restrictions remain however, notably right invariance, which is touched upon

in Chapter 4. As an aside, previous works defined similar canonical forms for finite-

memory automata in [26,27]. An extension of the RA learning algorithm [58] generalizes

it to other operations, while conditioning canonicity to provision of a canonical tree

oracle.

The problem of fresh values was first tackled by Bollig et al. [37], with an algorithm

capable of learning session automata. The algorithm builds on the idea that a

newly introduced value only has impact within a session. Once the session ends, the

value can be forgotten. Session automata are similar to RAs with equalities and

unbounded parameter domains, which can express fresh values. Nevertheless, their

expressive power is limited. They cannot express, for example, languages containing

only sequences of letters where every two consecutive letters are distinct. Fresh values

were also tackled in the learner SIMPA [24], which uses a tabled learning algorithm,

and data mining as means of inferring guards.

More recently, Moerman et al. [156] formulate algorithms based on L∗ [19] and

its extension to non-deterministic DFAs [36], for learning deterministic and non-

deterministic nominal automata [35] with equalities. In concise form, these resemble

acceptor RAs with equalities without methods, just values (i.e. letters). Their

algorithm is based on nominal set theory [172]. Prefixes and suffixes are arranged in an

observation table as in L∗, but are no longer encoded by single sequences. Instead they

are encoded by sets over the infinite alphabet. These sets, while infinite in the number

of elements, admit a finite representation which is achieved using orbits. For example,

supposing a and b are two distinct letters from the alphabet, the orbit of a is the set of

all 1 letter sequences, whereas the orbit of ab is the set of all 2 distinct letter sequences.

The data structures stored in the table are functions which compactly describe the

behavior of the automaton over the set obtained by extending each element of the

prefix with each element of the suffix. Their algorithm can be easily adapted to

nominal automata with inequalities by virtue of the swappable underlying structure it

builds on.

Other works such as [80, 146,153] develop algorithms for inferring acceptor symbolic

automata. These can be seen as acceptor RAs without registers. The algorithms

introduced by Botinčan and Argyros et al. [22,43] can learn extended transducer forms

of these automata. For example, the algorithm in [43] infers models extended with the

notion of a lookback parameterized by n, which allows transitions to refer to any of the

n last introduced values. Giannakopoulou et al. and Howar et al. [95, 157] developed

a white-box algorithm to infer component interfaces of Java programs. The inferred

models resemble symbolic automata; transitions are labeled with method names and

guarded with constraints on the corresponding method parameters. The automata

capture the safety behavior (i.e. are exceptions generated?) a Java class exhibits by
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invoking sequences of its public methods.

In the context of passive learning, which entails extracting information from a set of

traces, data and control aspects have traditionally been analyzed separately. With

regards to data, we mention the tool Daikon, which implements various techniques for

invariant extraction from traces generated by execution of an instrumented program

[78,79, 81, 82]. Research on Daikon has spun the development of new techniques that

leverage symbolic execution in order to produce fewer and more useful invariants

[72, 226]. In the context of control, notable are the classical state machine extraction

techniques such as Gold’s algorithm, Regular Positive and Negative Inference (RPNI)

and Evidence-Driven State Merging (EDSM). These algorithms are used to extract a

DFA from a set of positive and negative traces (or samples). We refer the reader to [108]

for an overview of these algorithms. More advanced solutions for the same problem have

been developed like DFASAT [106], which encodes learning as a Satisfiability (SAT)

problem and solves it using a SAT solver. In a similar way, Neider et al. [161, 162]

encode learning as an SMT problem and solve it using an SMT solver. Neider’s

thesis [162] also provides a detailed comparison between the various passive learning

approaches.

Data and control are facets that only combined can give a complete description of

software behavior. It is only in recent works, that attempts have been made to extract

models capturing both aspects. Some approaches extract EFSMs from the specification

of a program in the context of automata-based programming. Ulyansev et al. [204] use

an adaptation of the DFASAT algorithm to infer EFSMs from test scenarios. Test

scenarios are sequences of elements, where each element comprises the triggering event

(can be seen as input), a condition (can be seen as a guard) and one or more outputs

generated. Later work [62] extracts automata from both test scenarios and a set of

supplied temporal specifications (LTLs). It encodes automata extraction from test

scenarios as a Constraint Satisfiability Problem (CSP), which it solves with a CSP

solver. Using CSP instead of SAT simplifies the encoding. The EFSM obtained is

verified against the supplied LTLs. In case it doesn’t conform to all, the model and

specification are inputted to an approach based on ant colony optimization [61].

Other approaches obtain EFSMs from program traces generated from program exe-

cution, comprising sequences of method calls joined by valuations over variables and

method parameters. These expose less information than test scenarios (guards are

hidden) and can be generated in an automated way. Lorenzoli et al. [144] define the

GK-tails algorithm which uses Daikon and the K-tails [34] state merging algorithm

to obtain EFSMs models from program traces. The EFSMs generated are similar to

the RAs presented here. Similar traces are joined together into a single trace. The

resulting traces are then decorated using Daikon with invariants over the variables and

method parameters. From the decorated traces, a model is generated using K-tails

(states whose next K sequences are similar are merged). The model’s guards comprise

the invariants Daikon derived. Krka et al. [133] adapt the GK-tails algorithm by only

allowing merging of states having the same program state. Their work evaluates four
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different strategies for model synthesis based on invariants or trace sequences. In

the context of fault analysis, a different approach [148] applies rewriting rules on the

traces, replacing concrete data values by abstract ones, and inputs the rewritten traces

to a passive FSM learner.

Walkinshaw et al. [215] remarked that while the EFSMs generated by GK-tails are

informative and reasonably concise, they are generally non-deterministic (a consequence

of transitions being analyzed individually) which reduces their practicality. Moreover,

model expressivity is tied to Daikon’s invariants, making the approach less flexible.

Walkinshaw et al. formulate a different EDSM algorithm which uses data classifiers

(such as if-then-else clauses or binary decision trees) to determine which states can

be merged, and to implement the transition guards. Data classifiers are generated by

applying data classifier inference techniques over the set of traces. They implement

this approach in the tool MINT, which they connect to the WEKA [102] classifier

framework, providing access to around 100 classifier inference techniques. Approaches

so far generate EFSMs that are partial, as they specify only specify guards and not how

variables are updated. In a later work, Walkinshaw et al. [214] address this problem by

augmenting the EFSMs with update functions inferred by Genetic Programming [132],

resulting in fully computational models.

1.6.3 Optimizations to the Active Learning Framework

Recent optimizations of the learning setting have involved reducing learning algorithm

overhead, ensuring quality of subsequent hypothesis during learning and better testing.

We refer to [119] for a thorough overview of earlier advancements.

Our experience in Chapters 4 and 6 has shown that in terms of the number of tests

needed to learn a model, the best performing algorithms are those which require the

fewest tests to incorporate counterexamples into their structure and produce new

hypotheses. In other words, learners with the least overhead are the most efficient.

Recent advancements have tackled this overhead by shorter counterexamples and

optimized data structures.

Aarts et al. [2] noted that shorter counterexamples reduce the overall number of

tests required, as they result in shorter suffixes. Consequently, they incorporated

into their RA learning algorithm, techniques introduced by Koopman et al. [131] for

counterexample shrinking. These techniques involve eliminating from counterexamples

single transitions or sequences which form loops in the last hypothesis. The effectiveness

of applying these techniques was evidenced in [8], which compared existing RA

learning approaches. Therein, loop elimination was shown to have a marked effect in

shortening counterexamples, and consequently in reducing the number of tests needed

for learning.

Reduction in test numbers can also be attained by using optimized data structures.

Observation tables provide an intuitive, yet costly way of encoding observations. The

cost lies not so much in the memory footprint, as it does in the number of tests
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needed to close a table and build a new hypothesis. Some of these tests might be

meaningless with regards to incorporating the essence of the last counterexample,

yet are needed as a side-effect of the structure used and of the redundancies often

present in counterexamples. Kearns and Vazirani [127] introduced discrimination trees

(they call ’classification trees’) as an alternative to observation tables. More advanced

algorithms such as the Observation Pack [116] and TTT [122] incorporate similar

structures. The work in [122] benchmarks different learning algorithms and shows

the effectiveness of TTT, and more generally, of algorithms based on discrimination

trees

A different line of work follows the quality of hypotheses generated in learning. The

aim is to ensure that every new hypothesis is at least just as good qualitatively as

the last. Comparing hypothesis is done on the basis of a distance metric. Smetsers

et al. [197] formalize a metric based on the minimal-length counterexample which

distinguishes a hypothesis from the SUL. A hypothesis is better if the minimal-length

counterexample is longer. This metric follows the remark of Alfaro et al. [75] that a

potential bug in the far-away future is less troubling than a potential bug today.

Smetsers et al. integrate the metric into L∗ by adding an additional check performed

on each newly generated hypothesis, comparing it to the previous. This comparison

results either in a quality guarantee or in a new counterexample for the learner. Later

work by Van den Bos et al. [207] enhances Angluin’s framework by adding a general

Comparator component to perform the comparison based on a given metric. They

also introduce a new metric centered on the distance of a hypothesis to a set of logs.

While ensuring a notion of quality was the main goal, both works note a decrease in

the number of tests as a (desirable) side-effect of enforcing these metrics.

Finally, learning correct models cannot be done without effective testers. Our case

studies have used the model-based algorithm introduced in [191]. The novelty of

the algorithm lies in forming a test by post-pending to a sequence of inputs leading

to a state, an adaptive distinguishing sequence which distinguishes this state. By

comparison, other model-based algorithms (W-method [65] and Wp-method [92])

post-pend other forms of separating sequences. The conception of this algorithm was

prompted by failure of the W and Wp-method algorithms to find counterexamples

to an invalid hypothesis in an industrial case study [190]. On the note of separating

sequences for states in the model, Smetsers et al. [195] propose a more efficient

algorithm for computing them, which can be used to enhance the performance of

classical test algorithms like the W-method.

A different approach used in [16] adapts model-based mutation testing (shown to be

effective in [14,15]) for learning Mealy machines. The resulting algorithm compares

favorably to that in [191] on the TCP and MQTT models inferred in [88,200]. Yoo

et al. [225] propose a different test approach whereby testing is done using a com-

bination of the W-method and random sampling. Effectiveness is shown through

learning experiments on the DNP3 protocol. Alternatively, in a context where several

implementations are learned simultaneously, counterexamples can be derived from
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differences between the hypotheses generated, as done so in [21].

Testing approaches presented so far have been mainly guided by models (model-based).

In the context of conformance testing however, it is specifications which we want to

check. So it is natural to design tests on the basis of these specifications. To that end,

works proposing integration of model checking with model learning [149–152,170] use

counterexamples supplied by the model checker to drive the learning process.

Moving away from black-box settings, white-box methods can also prove effective.

For example, the learning algorithms in [63] and [157] use symbolic or concolic

execution [130] to instantiate tests exploring paths in programs. The effectiveness

of symbolic execution compared to black-box approaches was shown in case studies

involving the concolic execution tool JDart [94, 145]. Smetsers et al. [196] propose

an alternative approach whereby testing is done by fuzzing. Their combined model

learning and fuzzing approach scored very well in the RERS 2016 challenge [180], a

competition which aims at comparing verification techniques and tools. For fuzzing,

they used the tool American Fuzzy Lop (AFL) [13], which helped uncover behaviors

that weren’t found using an adapted Wp-method.

1.6.4 Tools for Reverse Engineering

Our last section covers tools for reverse engineering. Model learning itself can be

viewed as a reverse engineering technique. That said, model learning relies on kno-

wing the SUL’s interface. Such knowledge cannot always be guaranteed, especially

when considering botnets, whose protocols are purposefully hidden. Consequently,

interface inference becomes a key problem. Interfaces comprise the message formats

an application uses.

Among tools supporting interface inference, Discoverer [73], Biprominer [216], Veritas

[218] and ProDecoder [217] generate message formats solely from network traces.

To shed insight into how inference can be done, we give a rough description of the

mode of operation followed by Veritas and ProDecoder. Raw packets obtained in

an observation step are decomposed into sequences of n contiguous bytes (so called

n-grams). Keywords are identified from these sequences (for example GET for HTTP),

distinguished by the high frequency with which they appear, and then used in machine

learning to group messages of the same type into clusters. From each cluster a message

format is derived (a way to do this is via sequence alignment techniques such as those

in [160] and [83]).

Other tools use the application’s binary in dynamic taint analysis. This technique

involves monitoring how the application processes inputs in order the extract their

formats. Polyglot [52], AutoFormat [141], Tupni [74] and Dispatcher [51] fit in this

category. We can also include Autogram [111], a tool developed for Java programs

(thus uses application bytecode) to learn context free grammars.

Having obtained the interface, we can then perform model inference. Tools relying on
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provision of the interface include all active learning tools, of which we mention Tomte4

and RALib5 [54] for learning RAs, LearnLib [123]6, AIDE7 [17] and libalf8 [140] for

learning variations of FSMs. From passive learning tools we mention dfasat9 [106],

StateChum10 [212] and MINT11 [215], the latter designed for EFSM synthesis. Other

tools integrate interface inference with model inference, Netzob12 [40,42] being a prime

example. Once it has obtained packet formats from traces (using techniques described

in [41]), Netzob uses an adaptation of Angluin’s active learning algorithm to infer

transition graphs which can then be used in protocol analysis.

Work in [24] introduces a model-based toolchain for security testing of web applications.

Therein, two approaches are described for inferring models of web applications. One

relies on a Web crawler to extract an interface and active learning to infer a model using

this interface [112], the other uses static analysis to generate a model [155].

4http://tomte.cs.ru.nl/
5https://bitbucket.org/learnlib/ralib/
6https://learnlib.de/
7http://aide.codeplex.com/
8http://libalf.informatik.rwth-aachen.de/
9https://bitbucket.org/chrshmmmr/dfasat/

10http://statechum.sourceforge.net/
11https://bitbucket.org/nwalkinshaw/efsminferencetool/
12https://github.com/netzob/netzob/

http://tomte.cs.ru.nl/
https://bitbucket.org/learnlib/ralib/
https://learnlib.de/
http://aide.codeplex.com/
http://libalf.informatik.rwth-aachen.de/
https://bitbucket.org/chrshmmmr/dfasat/
http://statechum.sourceforge.net/
https://bitbucket.org/nwalkinshaw/efsminferencetool/
https://github.com/netzob/netzob/
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1.7 Thesis Contents and Personal Contribution

We end the introduction by recapping the contents of the thesis while noting the

author’s personal contribution. The thesis gathers works from four peer-reviewed

articles published at workshops or conferences and one unpublished journal entry

which extends a separate article that was also peer-reviewed. Each work is included

in a separate chapter. The author has made a significant contribution to each work,

nevertheless, it is important to stress out that all works resulted from collaborative

efforts.

Chapter 2 describes a case study involving model learning with mappers and model

checking TCP implementations. Chapter 2 is based on the following publication:

P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Combining Model Learning

and Model Checking to Analyze TCP Implementations. In CAV 2016, volume

9780 of LNCS, pages 454–471. Springer, 2016 [88]

This publication largely supersedes the following article:

P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Learning Fragments of the

TCP Network Protocol. In FMICS 2014, volume 8718 of LNCS, pages 78–93.

Springer, 2014 [87]

All data relevant to Chapter 2 has been deposited and is available at:

P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Source code and data

relevant for the paper ’Combining Model Learning and Model Checking to

Analyze TCP Implementations’. 2017. doi: 10.17026/dans-xhw-8tyc [86]

Personal Contribution My responsibilities involved implementing the learning setup,

formalizing properties from the specifications, running experiments for all implementa-

tions, analyzing the learned models and finding inconsistencies. I have also written a

considerable part of the article.

Chapter 3 describes a case study involving model learning with mappers and model

checking SSH implementations. Chapter 3 is based on the following publication:

P. Fiterău-Broştean, T. Lenaerts, J. de Ruiter, E. Poll, F. Vaandrager, and

P. Verleg. Model Learning and Model Checking of SSH Implementations. In

Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on

Model Checking of Software, SPIN 2017, pages 142–151. ACM, 2017 [89]

All data relevant to Chapter 3 has been deposited and is available at:

P. Fiterău-Broştean, E. Poll, F. Vaandrager, T. Lenaerts, J. D. Ruiter, and

P. Verleg. Source code and data relevant for the paper ’Model Learning and

Model Checking of SSH Implementations’. 2018. doi: 10.17026/dans-z6n-dxq6 [90]

Personal Contribution My responsibilities involved running experiments for BitVise

and DropBear, formalizing properties from the specifications and checking them on



28 1. Introduction

the learned models. I was the main writer of the article. Moreover, I co-supervised

and assisted a Bachelor student with connecting an advanced testing tool to the SSH

learning setup, and with learning models for OpenSSH.

Chapter 4 describes an extension of the CEGAR learning algorithm Aarts intro-

duced in [2] to the setting of fresh values. Chapter 4 is based on the following

article:

F. Aarts, P. Fiterău-Broştean, H. Kuppens, and F. W. Vaandrager. Learning

Register Automata with Fresh Value Generation. Unpublished, 2016 [6]

This article is due submission at a journal and is an extension of the following

publication:

F. Aarts, P. Fiterău-Broştean, H. Kuppens, and F. W. Vaandrager. Learning

Register Automata with Fresh Value Generation. In ICTAC 2015, volume 9399

of LNCS, pages 165–183. Springer, 2015 [5]

All data relevant to Chapter 4 has been deposited and is available at:

F. Aarts, P. Fiterău-Broştean, H. Kuppens, and F. Vaandrager. Source code

and data relevant for the paper ’Learning Register Automata with Fresh Value

Generation’. 2017. doi: 10.17026/dans-zkb-4ppm [4]

Personal Contribution I was a contributor to the idea of a determinizer which

spun up during a discussion. I was also involved in implementing the extension and

optimizations into Tomte, and running the experiments. In addition, I took part

in writing the journal publication, particularly the parts regarding Tomte and the

experimental section.

Chapter 5 describes a case study where we used model learning with tree queries

to learn TCP client implementations. We then manually checked the obtained models

against the specification. Chapter 5 is based on the following publication:

P. Fiterău-Broştean and F. Howar. Learning-Based Testing the Sliding Window

Behavior of TCP Implementations. In Critical Systems: Formal Methods and

Automated Verification, pages 185–200. Springer, 2017 [84]

All data relevant to Chapter 5 has been deposited and is available at:

P. Fiterău-Broştean and F. Howar. Source code and data relevant for the paper

’Learning-Based Testing the Sliding Window Behavior of TCP Implementations’,

2017. doi: 10.17026/dans-zkt-t8xx [85]

Personal Contribution My responsibilities involved formulating a determinizer for

this setting, implementing the necessary extensions into RALib, implementing the

learning setup (I was able to re-use some of the components used in Chapter 2),

running the experiments, analyzing the models, finding and reporting inconsistencies.

I also contributed in writing the publication, particularly the TCP and experimental

sections.
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Chapter 6 introduces an alternative learning framework and provides an implemen-

tation using SMT. Chapter 6 is based on the following publication:

R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager. Model Learning as a

Satisfiability Modulo Theories Problem. To appear in LATA 2018 [194]

All data relevant to Chapter 6 has been deposited and is available at:

R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager. Source code and data

relevant for the paper ’Model Learning as a Satisfiability Modulo Theories

Problem’, 2017. doi: 10.17026/dans-xn2-yewe [193]

Personal Contribution Smetsers came up with the idea of the framework, and an

initial SMT implementation for FSMs with abstract alphabets. I proposed extending

it to RAs and adapting it to systems without resets. I contributed to the formulation

of the RA and IORA encodings. I was involved in developing the implementation and

conducting experiments. I also contributed in writing, particularly the experimental

section.

Chapter 7 draws conclusions and identifies possible lines of future work.

For Chapters 2 through 6 I was also responsible for depositing data relevant to these

chapters to the DANS archive13. Deposits were made for each chapter. They include

source code, models, logs, etc. Also included is documentation which provides a

high-level description of the data and gives instructions on how software can be run

so as to help reproduce experiments. Readers interested in specific data are referred

to these deposits.

13https://dans.knaw.nl/en

https://dans.knaw.nl/en




Chapter 2

Model Learning and Model Checking of

TCP Implementations

We combine model learning and model checking in a challenging case study

involving Linux, Windows and FreeBSD implementations of TCP. We use model

learning to infer models of different software components and then apply model

checking to fully explore what may happen when these components (e.g. a Linux

client and a Windows server) interact. Our analysis reveals several instances in

which TCP implementations do not conform to their RFC specifications.

2.1 Introduction

Our society has become completely dependent on network and security protocols such

as TCP/IP, SSH, TLS, Bluetooth, and EMV. Protocol specification or implementation

errors may lead to security breaches or even complete network failures, and hence

many studies have applied model checking to these protocols in order to find such

errors. Since exhaustive model checking of protocol implementations is usually not

feasible [124], two alternative approaches have been pursued in the literature. This

chapter proposes a third approach.

A first approach, followed in many studies, is to use model checking for analysis of

models that have been handcrafted starting from protocol standards. Through this

approach many bugs have been detected, see e.g. [28, 48,109,135,142,199]. However,

as observed in [46], the relationships between a handcrafted model of a protocol and

the corresponding standard are typically obscure, undermining the reliability and

relevance of the obtained verification results. In addition, implementations of protocols

frequently do not conform to their specification. Bugs specific to an implementation

can never be captured using this way of model checking. In [87], for instance, we showed

that both the Windows 8 and Ubuntu 13.10 implementations of TCP violate the

standard. In [181], new security flaws were found in three of the TLS implementations

that were analyzed, all due to violations of the standard. In [59] and [208] it was shown
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that implementations of a protocol for Internet banking and of SSH, respectively,

violate their specification.

A second approach has been pioneered by Musuvathi and Engler [158]. Using the CMC

model checker [159], they model checked the “hardest thing [they] could think of”, the

Linux kernel’s implementation of TCP. Their idea was to run the entire Linux kernel

as a CMC process. Transitions in the model checker correspond to events like calls

from the upper layer, and sending and receiving packets. Each state of the resulting

CMC model is around 250 kilobytes. Since CMC cannot exhaustively explore the

state space, it focuses on exploring states that are the most different from previously

explored states using various heuristics and by exploiting symmetries. Through their

analysis, Musuvathi and Engler found four bugs in the Linux TCP implementation.

One could argue that, according to textbook definitions of model checking [23, 68],

what Musuvathi and Engler do is not model checking but rather a smart form of

testing.

The approach we explore in this chapter uses model learning. Model learning, or active

automata learning [2, 19, 198], is emerging as a highly effective technique to obtain

models of protocol implementations. In fact, all the standard violations reported

in [59, 87, 181, 208] have been discovered (or reconfirmed) with the help of model

learning. The goal of model learning is to obtain a state model of a black-box system

by providing inputs to and observing outputs. This approach makes it possible to

obtain models that fully correspond to the observed behavior of the implementation.

Since the models are derived from a finite number of observations, we can (without

additional assumptions) never be sure that they are correct: even when a model is

consistent with all the observations up until today, we cannot exclude the possibility

that there will be a discrepancy tomorrow. Nevertheless, through application of

conformance testing algorithms [137], we may increase confidence in the correctness of

the learned models. In many recent studies, state-of-the-art tools such as LearnLib [198]

routinely succeeded to learn correct models efficiently. In the absence of a tractable

white-box model of a protocol implementation, a learned model is often an excellent

alternative that may be obtained at relatively low cost.

The main contribution of this chapter is the combined application of model checking,

model learning and abstraction techniques in a challenging case study involving Linux,

Windows and FreeBSD implementations of TCP. Using model learning and abstraction

we infer models of different software components and then apply model checking to

explore what may happen when these components (e.g. a Linux client and a Windows

server) interact.

The idea to combine model checking and model learning was pioneered in [170], under

the name of black box checking. In [151], a similar methodology was introduced to

use learning and model checking to obtain a strong model-based testing approach.

Following [151,170], model checkers are commonly used to analyze models obtained via

automata learning. However, most of these applications only consider specifications

of a single system component, and do not analyze networks of learned models. An
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exception is the work of Shahbaz and Groz [188] on integration testing, in which

learned component models are composed and then analyzed using reachability analysis

in order to find integration faults. Our results considerably extend our previous work

on learning fragments of TCP [87] since we have (1) added inputs corresponding to

calls from the upper layer, (2) added transmission of data, (3) inferred models of

TCP clients in addition to servers, and (4) learned models for FreeBSD in addition to

Windows and Linux. Abstraction is the key for scaling existing automata learning

methods to realistic applications. In order to obtain tractable models we use the

theory of abstractions from [10], which in turn is inspired by earlier work on predicate

abstraction [67,143]. Our use of abstractions is similar to that of Cho et al [64], who

used abstractions to infer models of realistic botnet command and control protocols.

Whereas in our previous studies on model learning the abstractions were implemented

by ad-hoc Java programs, we now define them in a more systematic manner. We

provide a language for defining abstractions, and from this definition we automatically

generate mapper components for learning and model checking.

Our method may be viewed as a smart black-box testing approach that combines the

strengths of model learning and model checking. The main advantage of our method

compared to approaches in which models are handcrafted based on specifications is

that we analyze the “real thing” and may find “bugs” in implementations. In fact, our

analysis revealed several instances in which TCP implementations do not conform to

the standard. Compared to the white-box approach of Musuvathi and Engler [158], our

black-box method has several advantages. First of all, we obtain explicit component

models that can be fully explored using model checking. Also, our method appears to

be easier to apply and is more flexible. For instance, once we had learned a model

of the Linux implementation it took just two days to learn a model of the Windows

implementation. In the approach of [158], one first would need to get access to the

proprietary code from Microsoft, and then start more or less from scratch from an

entirely different code base. In contrast, using our approach it is possible to learn a

model of any TCP implementation within a few days. Besides these practical benefits,

there is also an important philosophical advantage. If one constructs a model of some

real-world phenomenon or system and makes claims based on this model then, in

line with Popper [175], we think this model ought to be falsifiable. Our model of

the Windows 8 TCP client is included in the chapter in Figure 2.2, and all Mealy

machine and nuSMV models are available at 1. Our notion of state is clear and based

on the Nerode congruence [163]: two traces lead to the same state unless there is a

distinguishing suffix. Any researcher can study our models and point out mistakes. In

contrast, the model of Musuvathi is specified implicitly through heuristics (when have

we seen a state before?) that are programmed on top of the Linux implementation.

As a result, falsification of their model is virtually impossible.

1http://www.sws.cs.ru.nl/publications/papers/fvaan/FJV2016/

http://www.sws.cs.ru.nl/publications/papers/fvaan/FJV2016/
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2.2 Background on Model Learning

Mealy machines

During model learning, we represent protocol entities as Mealy machines. A Mealy

machine is a tuple M = 〈I,O,Q, q0,→〉, where I, O, and Q are finite sets of input

actions, output actions, and states, respectively, q0 ∈ Q is the initial state, and

→⊆ Q× I ×O×Q is the transition relation. We write q
i/o−−→ q′ if (q, i, o, q′) ∈→. We

assume M to be input enabled (or completely specified) in the sense that, for each

state q and input i, there is a transition q
i/o−−→ q′, for some o and q′. We call M

deterministic if for each state q and input i there is exactly one output o and one state

q′ such that q
i/o−−→ q′. We call M weakly deterministic if for each state q, input i and

output o there is exactly one state q′ with q
i/o−−→ q′.

Let σ = i1 · · · in ∈ I∗ and ρ = o1 · · · on ∈ O∗. Then ρ is an observation triggered

by σ in M, notation ρ ∈ AM(σ), if there are q0 · · · qn ∈ Q∗ such that q0 = q0 and

qj−1
ij/oj−−−→ qj , for all j with 0 ≤ j < n. If M and M′ are Mealy machines with

the same inputs I and outputs O, then we write M ≤ M′ if, for each σ ∈ I∗,

AM(σ) ⊆ AM′(σ). We say that M and M′ are (behaviorally) equivalent, notation

M≈M′, if both M≤M′ and M′ ≤M.

If M is deterministic, then AM(σ) is a singleton set for each input sequence σ. In

this case, M can equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉, with

δ : Q× I → Q, λ : Q× I → O, and q
i/o−−→ q′ ⇒ δ(q, i) = q′ ∧ λ(q, i) = o.

MAT framework

The most efficient algorithms for model learning all follow the pattern of a minimally

adequate teacher (MAT) as proposed by Angluin [19]. In the MAT framework, learning

is viewed as a game in which a learner has to infer an unknown automaton by asking

queries to a teacher. The teacher knows the automaton, which in our setting is

a deterministic Mealy machine M. Initially, the learner only knows the inputs I

and outputs O of M. The task of the learner is to learn M through two types of

queries:

• With a membership query, the learner asks what the response is to an input

sequence σ ∈ I∗. The teacher answers with the output sequence in AM(σ).

• With an equivalence query, the learner asks whether a hypothesized Mealy

machine H is correct, that is, whether H ≈ M. The teacher answers yes if

this is the case. Otherwise it answers no and supplies a counterexample, which

is a sequence σ ∈ I∗ that triggers a different output sequence for both Mealy

machines, that is, AH(σ) 6= AM(σ).

Starting from Angluin’s seminal L∗ algorithm [19], many algorithms have been proposed

for learning finite, deterministic Mealy machines via a finite number of queries. We
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refer to [119] for recent overview. In applications in which one wants to learn a model of

a black-box reactive system, the teacher typically consists of a System Under Learning

(sul) that answers the membership queries, and a conformance testing tool [137]

that approximates the equivalence queries using a set of test queries. A test query

consists of asking to the sul for the response to an input sequence σ ∈ I∗, similar to

a membership query.

Abstraction

We recall relevant parts of the theory of abstractions from [10]. Existing model learning

algorithms are only effective when applied to Mealy machines with small sets of inputs,

e.g. fewer than 100 elements. Practical systems like TCP, however, typically have

huge alphabets, since inputs and outputs carry parameters of type integer or string.

In order to learn an over-approximation of a “large” Mealy machine M, we place a

transducer in between the teacher and the learner, which translates concrete inputs in

I to abstract inputs in X, concrete outputs in O to abstract outputs in Y , and vice

versa. This allows us to abstract a Mealy machine with concrete symbols in I and

O to a Mealy machine with abstract symbols in X and Y , reducing the task of the

learner to inferring a “small” abstract Mealy machine.

Formally, a mapper for inputs I and outputs O is a deterministic Mealy machine

A = 〈I ∪O,X ∪ Y,R, r0, δ, λ〉, where I and O are disjoint sets of concrete input and

output symbols, X and Y are disjoint sets of abstract input and output symbols, and

λ : R× (I ∪O)→ (X ∪Y ), the abstraction function, respects inputs and outputs, that

is, for all a ∈ I ∪O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

Basically, the abstraction of Mealy machineM via mapper A is the Cartesian product

of the underlying transition systems. Let M = 〈I,O,Q, q0,→M〉 be a Mealy machine

and let A = 〈I ∪O,X ∪ Y,R, r0, δA, λA〉 be a mapper. Then αA(M), the abstraction

of M via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q×R, (q0, r0),→α〉, where ⊥6∈ Y is a

fresh output and →α is given by the rules

q
i/o−−→M q′, r

i/x−−→A r′
o/y−−→A r′′

(q, r)
x/y−−→α (q′, r′′)

6 ∃i ∈ I : r
i/x−−→A

(q, r)
x/⊥−−−→α (q, r)

To understand how the mapper is utilized during learning, we follow the execution of

a single input of a query. The learner produces an abstract input x, which it sends

to the mapper. By inversely following abstraction function λA, the mapper converts

this to a concrete input i and updates its state via transition r
i/x−−→A r′. The concrete

input i is passed on to the teacher, which responds with a concrete output o according

to q
i/o−−→M q′. This triggers the transition r′

o/y−−→A r′′ in which the mapper generates

the corresponding abstract output y and updates its state again. The abstract output

is then returned to the learner.

We notice that the abstraction function is utilized invertedly when translating inputs.

More precisely, the abstract input that the learner provides is an output for the mapper.
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The translation from abstract to concrete involves picking an arbitrary concrete value

that corresponds to the given abstract value. It can be that multiple concrete values

can be picked, in which case all values should lead to the same abstract behavior, thus

ensuring that the resulting abstract model is deterministic. It can also be that no

values correspond to the input abstraction, in which case, by the second rule, ⊥ is

returned to the learner, without consulting the teacher. We define the abstraction

component implementing αA as the transducer which follows from the mapper A, but

inverts the abstraction of inputs.

From the perspective of a learner, a teacher for M and abstraction component

implementing αA together behave exactly like a teacher for αA(M). If αA(M) is

deterministic, then the learner will eventually succeed in learning a deterministic

machine H satisfying αA(M) ≈ H. In [10], also a concretization operator γA is

defined. This operator is the adjoint of the abstraction operator: it turns any abstract

machine H with symbols in X and Y into a concrete machine with symbols in I and

O. If H is deterministic then γA(H) is weakly deterministic.

As shown in [10], αA(M) ≤ H implies M≤ γA(H). This tells us that when we apply

mapper A during learning of some “large” Mealy machineM, even though we may not

be able to learn the behavior of M exactly, the concretization γA(H) of the learned

abstract model H is an over-approximation of M, that is, M≤ γA(H). Similarly to

the abstraction component, a concretization component for mapper A implements γA.

This component is again fully defined by a mapper, but handles abstraction of outputs

invertedly. During model checking, the composition of the abstract model H and the

concretization component for A provides us with an over-approximation of M.

Framework for mapper definition

In order to apply our abstraction approach, we need an abstraction and a concre-

tization component for a given mapper A. We could implement these components

separately in an arbitrary programming language, but then they would have to remain

consistent with A. Moreover, ensuring that translation in one component inverts

the corresponding translation in the other is non-trivial, and difficult to maintain, as

changes in one would have to be applied invertedly in the other.

We used an alternative approach, in which we first define a mapper and then derive

the abstraction and concretization components automatically. To this end, we built a

language for defining a mapper in terms of (finite) registers, and functions to encode

transitions and outputs. Our language supports case distinctions with programming-

style if-else-statements, and requires that every branch leads to exactly one output

and updates registers exactly once, such that the translations are complete. Except for

the restrictions of finiteness and determinism, our language has the expressiveness of

a simple programming language and should thus be usable to abstract (and concretize

reversely) a wide range of systems and protocols. Listing 2.1 shows the example of

a mapper for a simple login system. The mapper stores the first password received,

and compares subsequent passwords to it. The abstract passwords used by the learner
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are {true, false}, denoting a correct or incorrect password, respectively. At the first

attempt, true invertedly maps to any concrete password, and false maps to ⊥. Later

on true invertedly maps to the value picked the first time, while false maps to any

other value. For TCP, we define multiple abstraction functions for inputs and outputs,

in terms of multiple parameters per input or output.

Listing 2.1 A simple example mapper for a login system, in a simplified syntax

integer stored := −1;

map enter(integer password→ boolean correct)

if (stored = −1 ∧ password ≥ 0) ∨ stored = password then

correct := true

else

correct := false

update

if stored = −1 ∧ password ≥ 0 then

stored := password

else

stored := stored . Every path explicitly assigns a value

To derive the components, we need to implement the inverse of the abstraction function,

for both inputs and outputs. This can be achieved using a constraint solver or by

randomly picking concrete values until we find one that is translated to the abstract

value we want to concretize, where translation is done with the mapper in the forward

direction. The latter approach may be hard, as the concrete domain is usually very

large, while there may be only a few concrete values matching the abstract value,

meaning we would have to test many concrete values before we find a fitting one. To

that end, heuristics can help reduce the pool of selectable concrete values. Where

the latter approach improves on the former is in testing the abstraction function. We

want to ensure that different concrete values translating to the same abstract value

lead to the same abstract behavior, as the learner cannot handle non-determinism.

A constraint solver usually picks values in a very structured and deterministic way,

which does not test the abstraction function well. Picking concrete values randomly

and checking the corresponding abstract value allows more control over obtaining a

good test coverage, but is in general less scalable.

2.3 Learning Setup

2.3.1 TCP as a System under Learning

In TCP there are two interacting entities, the server and the client , which communicate

over a network through packets, comprising a header and application data. On both

sides there is an application, initiating and using the connection through socket calls.
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Figure 2.1: Overview of the learning setup.

Each entity is learned separately and is a sul in the learning context. This sul thus

takes packets or socket calls as inputs. It can output packets or timeout , in case the

system does not respond with any packet. RFC 793 [176] and its extensions, most

notably [44,168], specify the protocol.

Packets are defined as tuples, comprising sequence and acknowledgement numbers,

a payload and flags. By means of abstraction, we reduce the size of sequence and

acknowledgement number spaces. Each socket call also defines an abstract and concrete

input. Whereas packet configurations are the same for both client and server, socket

calls differ. The server can listen for connections and accept them, whereas the client

can actively connect. Both parties can send and receive data, or close an established

connection (specifically, a half-duplex close [44, p. 88]). The server can additionally

close its listening socket. Values returned by socket calls are not in the output alphabet

to reduce setup complexity.

Figure 2.1 displays the learning setup used. The learner generates abstract inputs,

representing packets or socket calls. The abstraction component concretizes each

input by translating abstract parameters to concrete, and then updates its state. The

concrete inputs are then passed on to the network adapter , which in turn transforms

each input into a packet, sending it directly to the sul, or into a socket call, which it

issues to the sul adapter . The sul adapter runs on the same environment as the sul

and its sole role is to perform socket calls on the sul. Each reponse packet generated

by the sul is received by the network adapter, which retrieves the concrete output

from the packet or produces a timeout output, in case no packet was received within a

predefined time interval. The output is then sent to the abstraction component, which

computes the abstract output, updates its state again, and sends the abstract output

to the learner.

The learner is based on LearnLib [178], a Java library implementing L∗ based algorithms

for learning Mealy machines. The abstraction component is also written in Java, and

interprets and inverts a mapper. The network adapter is a Python program based

on Scapy [183], Pcapy [169], and Impacket [118]. It uses Scapy to craft TCP packets,

and Scapy together with a Pcapy and Impacket based sniffer to intercept responses.

The network adapter is connected to the sul adapter via a standard TCP connection.
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This connection is used for communicating socket calls to be made on the sul. Finally,

the sul adapter is a program which performs socket calls on command, written in C

to have low level access to socket options. The sul adapter was designed so that it

does not block. To that end, it handles blocking calls such as accept-call by launching

new threads to make these calls. For reasons we explain later, the number of active

blocking calls is kept to a maximum of one.

2.3.2 Viewing the SUL as a Mealy Machine

TCP implementations cannot be fully captured by Mealy machines. To learn a

model, we therefore need to apply some restrictions. As mentioned, the number of

possible values for the sequence and acknowledgement numbers is reduced by means

of abstractions. Furthermore, payload is limited to either 0 or 1 byte. Consequently, 1

byte of data is sent upon a send -call. Flags are limited to only the most interesting

combinations, and we also abstract away from all other fields from the TCP layer or

lower layers, allowing Scapy to pick default values.

TCP is also time-dependent. The sul may, for instance, retransmit packets if they

are not acknowledged within a specified time. The sul may also reset if it does not

receive the acknowledgement after a number of such retransmissions, or if it remains

in certain states for too long. The former we handled by having the network adapter

ignore all retransmissions. For the latter, we verified that the learning queries were

short enough so as not to cause these resets.

TCP is inherently concurrent, as a server can simultaneously handle multiple connecti-

ons. This property is difficult to capture in Mealy machines. To overcome this, the

sul adapter ensures that at most one connection is accepted at any time by using

a set of variables for locking and unlocking the accept and connect-calls. Moreover,

at most one active blocking call is allowed at any time, whereas non-blocking socket

calls can always be called. The sul adapter ignores blocking calls when one is already

pending, resulting in timeout responses.

Furthermore, the backlog size parameter defines the number of connections to be

queued up for an eventual accept-call by the server sul. The model grows linearly

with this parameter, while only exposing repetitive behavior. For this reason we set

the backlog to the value 1.

2.3.3 Technical Challenges

We overcame several technical challenges in order to learn models. Resetting the sul

and setting a proper timeout value are solved similarly to [87].

Our tooling for sniffing packets sometimes missed packets generated by the sul,

reporting erroneous timeout outputs. This induced non-deterministic behavior, as a

packet may or may not be caught, depending on timing. Each observation is therefore

repeated three times to ensure consistency. Consistent outputs are cached to speed
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up learning, and to check consistency with new observations. It also allows to restart

learning with reuse of previous observations.

In order to remove time-dependent behavior we use several TCP settings. Most

notably, we disable slow acknowledgements and enable quick acknowledgements where

possible (on Linux and FreeBSD). The intuition is that we want the sul to send

acknowledgements whenever they can be issued, instead of delaying them. We also

had to disable syn cookies in FreeBSD, as this option caused generation of the initial

sequence number in a seemingly time dependent way, instead of using fresh values.

For Linux, packets generated by a send -call were occasionaly merged with previous

unacknowledged packets, so we could only learn a model by omitting send -call, although

data packets could still be sent from the learner to the sul.

2.3.4 Mapper Definition

The mapper is based on the work of Aarts et al. [2], and on the RFCs. Socket calls

contain no parameters and do not need abstraction, so they are mapped simply with the

identity relation. TCP packets are mapped by mapping their parameters individually.

Flags are again retained by an identity relation. The sequence and acknowledgement

numbers are mapped differently for inputs and outputs; input numbers are mapped

to {valid, invalid}, and outputs are mapped to {current,next, zero, fresh}. After a

connection is set up, the mapper keeps track of the sequence number which should be

sent by the sul and learner. Valid inputs are picked according to this, whereas current

and next represent repeated or incremented numbers, respectively. The abstract

output zero denotes the concrete number zero, whereas fresh is used for all other

numbers. If no connection is established, any sequence number is valid (as the RFCs

then allow a fresh value), and the only valid acknowledgement number is zero.

Recall that concrete inputs with the same abstract value should lead to an equivalent

abstract behavior, otherwise, the behavior exposed to the learner is non-deterministic.

As valid behavior is well specified by the RFC’s, we were able to define valid inputs

based largely on the RFC’s.

Invalid inputs, by contrast to their valid counterparts, trigger behaviors that are largely

undefined by RFCs. To learn the how the sul reacts to these inputs, abstractions

should be defined precisely according to these behaviors, which is unfeasible to do by

hand. As a result, we have excluded invalid inputs from the learning alphabet.

To translate valid inputs, we first used a constraint solver which finds solutions for the

transition relation. This is done by taking the disjunction of all path constraints, similar

to symbolic execution techniques [130]. However, this did not test the abstraction well,

as the constraint solver always picks zero if possible, for example. Hence, we instead

randomly picked concrete values until we found one matching the right abstract value.

Concrete values were picked with a higher probability if they or their predecessors

had been picked or observed previously during the same run. This approach sufficed

to translate all values for our experiments.
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The concrete mappers developed are available at 2. They were implemented in the

language described in Section 2.2. Note that a mapper is available for every operating

system tested, with minor differences between mappers. These differences are the

result of adaptations made to fit the the actual implementations. These adaptations

concern cases when the sul is reset by learner inputs. The mapper should be able to

detect whenever such a reset occurs and reset its state. Most conditions encoded in

the mapper for reset detection are the same among all operating systems. There are

however a few conditions specific to certain operating systems. To give an example,

receipt of a packet containing the rst flag always indicated reset of the sul for

Linux. By contrast, for FreeBSD and Windows, depending on the flags in the packet

which prompted the reset, receipt of a rst might mean that the sul state remained

unaffected. Conditions for detecting sul reset were refined during experiments. This

was possible, since insufficient conditions lead to occurrences of non-determinism,

causing learning to fail. We refined the conditions based on these occurrences.

2.3.5 Detailed TCP Mapper Description

Having described the mapper at a high level, we present in detail the actual mapper

used for learning Linux TCP stacks. The mappers used for the other operating systems

are similar, with the few differences noted earlier.

The mapper features two components, one for processing responses generated by the

sul, the other for processing requests generated by the learner. Responses generated

by the sul are either packets or timeouts. We treat them separately. Requests made

by the learner are either socket calls or abstract packet inputs. Socket calls are not

processed, as they don’t have any parameters nor do they require the mapper to change

state. Note that both components as described here perform the transformation from

concrete to abstract. However, both can be executed invertedly: during learning the

request component is used invertedly for concretizing abstract inputs.

The mapper uses variables to keep track of the sequence numbers of the two interacting

sides (during learning, these sides are the sul and the learner). The variables form the

mapper’s state and are needed to implement the abstractions. τ is a special value used

to initialize/reset variables. It is a small negative value, lying outside of the sequence

number domain, hence its use is strictly internal to the mapper. In constructing the

mapper, we tried to limit the number of variables, so as to keep its formulation simple.

With that being said, our mapper uses the following variables:

• learnerSeq - tracks the learner sequence number

• sulSeq - tracks the sul sequence number

• learnerSeqProposed - stores the sequence number sent by the learner whenever

no sequence number is active at the learner side (learnerSeq is τ). We call

such a sequence number fresh, as it may be used to establish a new connection.

learnerSeqProposed is reset upon processing each response.

2https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/input/mappers

https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/input/mappers
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Listing 2.2 Linux mapper: processing incoming packet responses

1: map response(flags flagsIn, int concSeq, int concAck, int concData→
flags absFlagsIn, absIn absSeq, absIn absAck)

2: absFlagsIn := flagsIn

3: if concSeq = sulSeq + 1 then

4: absSeq := next

5: else

6: if concSeq = sulSeq then

7: absSeq := current

8: else

9: if concSeq = 0 then

10: absSeq := zero

11: else

12: absSeq := fresh

13: if concAck = learnerSeq + 1 ∨ concAck = learnerSeqProposed + 1 then

14: absAck := next

15: else

16: if concAck = learnerSeq then

17: absAck := current

18: else

19: if concAck = 0 then

20: absAck := zero

21: else

22: absAck := fresh

23: update

24: if rst ∈ flagsIn ∨ (learnerSeqProposed 6= τ ∧ concAck 6= learnerSeqProposed + 1) then

25: sulSeq := τ

26: learnerSeq := τ

27: else

28: if learnerSeqProposed 6= τ ∨ concSeq = sulSeq + 1 then

29: if syn ∈ flagsIn ∨ fin ∈ flagsIn then

30: sulSeq := concSeq

31: else

32: if psh ∈ flagsIn then

33: sulSeq := sulSeq + concData

34: else

35: sulSeq := sulSeq

36: learnerSeq := concAck

37: else

38: if syn ∈ flagsIn then

39: sulSeq := concSeq

40: if concAck = zero then

41: learnerSeq := learnerSeq

42: else

43: learnerSeq := concAck

44: else

45: sulSeq := sulSeq

46: learnerSeq := learnerSeq

47: learnerSeqProposed := τ

Listing 2.2 shows the code used to process packet responses. Note that concData

stands for the payload size in a response. In lines 2-21 we compare sequence and

acknowledgement numbers to mapper variables, resulting in corresponding abstract

values. The variables are then updated using these numbers. At a high level, sulSeq and

learnerSeq are preserved unless certain situations occur which result in their change.

The code checks specifically for these situations. Lines 23-25 check if connection was

reset or could not be set up, in which case sulSeq and learnerSeq are reset. Lines 27-35

handle the general case when the packet sent by the sul was not resetting. Therein,
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sulSeq is updated in the presence of countable flags (syn and fin) or payload (suggested

by psh). learnerSeq always takes the value of the response’s acknowledgement number

(concAck), since through this number, the sul indicates the sequence number that it

next expects from the learner. Lines 37-42 handle the special case when the response

contains a syn flag yet no sequence number was proposed by the learner (this may

happen when the sul actively connects). The response sequence number is stored in

sulSeq since by including a syn flag, the sul announced that it will use this number

to establish a connection. The acknowledgment number is only stored in learnerSeq

if its value is not 0, as 0 indicates that the sul has no log of the learner’s sequence

number. In all other cases, sulSeq and learnerSeq stay the same.

Listing 2.3 Linux mapper: processing outgoing packet requests

1: map request( flags flagsOut, int concSeq, int concAck, int concData→
flags absFlagsOut, absOut absSeq, absOut absAck, int absData )

2: absData := concData, absFlagsOut := flagsOut

3: if learnerSeq = τ ∨ learnerSeq = concSeq then

4: absSeq := valid

5: else

6: absSeq := inv

7: if (sulSeq = τ ∧ concAck = 0) ∨ (sulSeq 6= τ ∧ concAck = sulSeq + 1) ∨ ack /∈ flagsOut then

8: absAck := valid

9: else

10: absAck := inv

11: update

12: if rst ∈ flagsOut ∧ absSeq = valid ∧ absAck = valid then

13: learnerSeqProposed := τ

14: sulSeq := τ

15: learnerSeq := τ

16: else

17: if learnerSeq = τ then

18: learnerSeqProposed := concSeq

19: else

20: learnerSeqProposed := τ

21: sulSeq := sulSeq

22: learnerSeq := learnerSeq

The code for processing timeout responses (not included) simply resets learnerSeqPro-

posed while preserving all other variables. Processing packet requests from the learner

(see Listing 2.3) is done in a similar way to responses, only now our abstractions are

valid/invalid. A sequence number is valid if either the learner sequence number is

not set, in which case any number is valid, or if it is equal to the learner sequence

number. All acknowledgement numbers are valid if ack is not contained in the packet

flags as the specification only requires validating acknowledgement numbers if ack is

present. If ack is contained, then valid numbers are 0 if the sul sequence number

is not set (as there is nothing to acknowledge), or the successor of sulSeq otherwise.

In the update section, we take care that we update learnerSeqProposed accordingly

and that we reset the variables whenever valid reset packets are issued. The request

component also computes abstraction for the payload size via absData. This allows

the learner to specify payload size in abstract inputs. We only used payload sizes of 0

or 1.
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2.4 Model Learning Results

Figure 2.2: Learned model for Windows 8 TCP Client. To reduce the size of the

diagram, we eliminate all self loops with timeout outputs. We replace flags and

abstractions by their capitalized initial letter and hence use s for syn, a for ack etc.

and n for next, c for current, z for zero and f for fresh. We omit input parameter

abstractions, since they are the same for all packets, namely valid for both sequence

and acknoweldgement numbers. Finally, we group inputs that trigger a transition to

the same state with the same output. Timeouts are denoted by ‘-’.
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Using the abstractions defined in Section 2.2, we learned models of the TCP client

and server for Windows 8, Ubuntu 14.04 and FreeBSD 10.2. For testing we used the

conformance testing algorithm described in [191] to generate efficient test suites which

are parameterized by a middle section of length k . Generated exhaustively, these

ensure learned model correctness, unless the respective implementation corresponds to

a model with at least k more states. For each model, we first executed a random test

suite with k of 4, up to 40000 tests for servers, and 20000 tests for clients. We then

ran an exhaustive test suite with k of 2 for servers, respectively 3 for clients.

Table 2.1 describes the setting of each of these experiments together with statistics on

learning and testing: (1) the number of states in the final model, (2) the number of

hypotheses found, (3) the total number of membership queries, (4) the total number

of unique test queries run on the sul before the last hypothesis, (5) the number of

unique test queries run to validate the last hypothesis. The models learned and other

experimental data such as input configurations used, hypothesis models generated

during learning and statistics, are available at 3.

SUL States Hyp. Mem. Q. Tests to l. Hyp. Tests on l. Hyp.

Client Windows 8 13 2 1576 1322 50243

Server Windows 8 38 10 11428 9549 65040

Client Ubuntu 14.04 15 2 1974 15268 56174

Server Ubuntu 14.04 57 14 17879 15681 66523

Client FreeBSD 10.2 12 2 1456 1964 47387

Server FreeBSD 10.2 55 18 22287 12084 75894

Table 2.1: Statistics for learning experiments

Figure 2.2 shows the model learned for the Windows 8 client. This model covers

standard client behavior, namely connection setup, sending and receiving data and

connection termination. Based on predefined access sequences, we identify each state

with its analogous state in the RFC state diagram [176, p. 23], if such a state exists.

Transitions taken during simulated communication between a Windows client and a

server are colored green. These transitions were identified during model checking, on

which we expand in Section 2.5. Models for Linux and FreeBSD clients can be found

in the appendix at the end of this chapter.

Table 2.1 shows that the models for the Linux and FreeBSD servers have more states

than for Windows, and all models have more states than described in the specification.

We attribute this to several factors. We have already mentioned that model sizes grow

linearly with the value of the backlog-parameter. While we set it to 1, the setting

is overridden by operating system imposed minimum value of 2 for FreeBSD and

Linux. Moreover, sul behavior depends on blocking system calls and on whether the

receive buffer is empty or not. Although specified, this is not modeled explicitly in

the specification state diagram. As an example, the established and close wait

states from the standard each have multiple corresponding states in the model in

Figure 2.2.

3https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models
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Non-conformance of implementations

Inspection of learned models revealed several cases of non-conformance to RFC’s in

the corresponding implementations.

A first non-conformance involves terminating an established connection with a close.

The resulting output should contain a fin if the closing side has read via rcv all data

received from the other side. Note that data is first received in a side’s buffer, from

which it is read and removed by rcv calls. If there is received data not yet read by

the closing side, the output should contain a rst, which would signal to the other side

an aborted termination [44, p. 88]. Windows does not conform to this, as a close

can generate a rst instead of a fin even in cases where there is no data to be read

(the data buffer is empty), namely, in states where a rcv call is pending. Figure 2.2

marks this behavior in red. FreeBSD implementations are also non-compliant, as they

always generate fin packets on a close, regardless if all data has been read. This

would arguably fall under the list of common bugs [168], namely “Failure to send

a RST after Half Duplex Close”. The learned Linux models fully comply to these

specifications.

A second non-conformance has to do with the processing of syn packets. On receiving

a syn packet in a synchronized state, if the sequence number is in “the window”

(as it always is, in our case), the connection should be reset (via a corresponding

rst packet) [176, p.71]. Linux implementations conform for syn packets but not for

syn+ack packets, to which they respond by generating an acknowledgement with no

change of state. Both Windows and FreeBSD respect this specification.

We note a final non-conformance in Windows implementations. In case the connection

does not exist (closed), a reset should be sent in response to any incoming packet

except for another reset [176, p. 36], but Windows 8 sends nothing. FreeBSD can be

configured to respond in a similar way to Windows, by changing the blackhole setting.4

This behavior is claimed to provide “some degree of protection against stealth scans”,

and is thus intentional.

2.5 Model Checking Results

2.5.1 Model Checking the Learned Behavior

We analyzed the learned models of TCP implementations using the model checker

NuSMV [66]. We composed pairs of learned client and server models with a hand-made

model of a non-lossy network, which simply delivers output from one entity as input

for the other entity. Since the abstract input and output domains are different, the

abstract models cannot communicate directly, and so we had to encode the concretized

models within NuSMV code. We wrote a script that translated the abstract Mealy

machine models from LearnLib to NuSMV modules, and another script that translated

4https://www.freebsd.org/cgi/man.cgi?query=blackhole

https://www.freebsd.org/cgi/man.cgi?query=blackhole
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Figure 2.3: Schematic overview of NuSMV-model. Only half of the setup is shown in

detail, as the model is symmetric and another TCP-entity model is connected to the

network.

the corresponding mappers to NuSMV modules. TCP entities produce abstract

outputs, which are translated to concrete. The network module then passes along

such concrete messages. Before being delivered to the other entity, these messages are

again transformed into abstract inputs. By encoding mapper functions as relations,

NuSMV is able to compute both the abstraction function and its inverse, i.e., act

as a concretization component. The global structure of the model is displayed in

Figure 2.3.

In Mealy machines, transitions are labeled by an input/output pair. In NuSMV

transitions carry no labels, and we also had to split the Mealy machine transitions into

a separate input and output part in order to enable synchronization with the network.

Thus, a single transition q
i/o−−→ q′ from a (concrete) Mealy machine is translated to a

pair of transitions in NuSMV:

(loc = q, in = .., out = ..)→(loc = q, in = i, out = ..)→(loc = q′, in = i, out = o).

Sequence and acknowledgement numbers in the implementations are 32-bit numbers,

but were restricted to 3-bit numbers to reduce the state space. Whereas concrete

messages are exchanged from one entity to the other, socket call inputs from the

application are simulated by allowing system-calls to occur non-deterministically. A

simplification we make is that we do not allow parallel actions: an action and all

resulting packets have to be fully processed until another action can be generated.

Consequently, there can be at most one packet in the composite model at any time.

For example, once a three way handshake is initiated between a client and a listening

server via a connect-call, no more system-calls can be performed until the handshake

is finalized.

2.5.2 Checking Specifications

After a model is composed, the interaction between TCP entities can be analyzed using

the NuSMV model checker. However, it is important to realize that, since we used

abstractions, the learned models of TCP servers and clients are over-approximations
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of the actual behaviors of these components. If Mealy machine M models the actual

behavior of a component, A is the mapper used, and H is the abstract model that we

learned then, as explained in Section 2.2, correctness of H implies M≤ γA(H). Since

γA(H) is weakly deterministic, in this case there exists a forward simulation relation

fromM to γA(H). This forward simulation is preserved by the translation from Mealy

machines to NuSMV. Results from Grumberg and Long [100] then imply that, for

any ∀CTL∗-formula (which includes all LTL-formulas) we can transfer model checking

results for γA(H) to the (unknown) model M. Since simulations are preserved by

composition, this result even holds when γA(H) is used as a component in a larger

model.

Another essential point is that only a subset of the abstract inputs is used for learning.

Hence invalid inputs (i.e. inputs with invalid parameters) are not included in our

models. Traces with these inputs can therefore not be checked. Hence, the first

property that we must check is a global invariant that asserts that invalid inputs will

never occur. In case they do, NuSMV will provide a counterexample, which is used

to find the cause of invalidity. During our initial experiments, NuSMV found several

counterexamples showing that invalid inputs may occur. Based on analysis of these

counterexamples we either refined/corrected the definition of one of the mappers, or

we discovered a counterexample for the correctness of one of the abstract models.

After a number of these iterations, we obtained a model in which invalid inputs can

no longer occur. As mapper construction is done manually, these iterations are also

not yet automated.

With only valid inputs, the composite model may be checked for arbitrary ∀CTL∗

formulas. Within these formulas, we may refer to input and output packets and their

constituents (sequence numbers, acknowledgements, flags,..). This yields a powerful

language for stating properties, illustrated by a few examples below. These formulas

are directly based on the RFC’s.

Many properties that are stated informally in the RFC’s refer to control states of the

protocol. These control states, however, cannot be directly observed in our black-box

setting. Nevertheless, we can identify states, e.g. based on inputs and outputs leading

to and from it. For example, we base the proposition established on RFC 793, which

states that: “The connection becomes ‘established’ when sequence numbers have been

synchronized in both directions” [176, p. 11], and that only a close or abort socket

call or incoming packets with a rst or fin can make an entity leave the established

state [176, section 3.9].

We first show a simple safety formula checking desynchonization: if one entity is in

the established state, the other cannot be in syn sent and time wait:

G¬(tcp1-state = established ∧ (tcp2-state = syn sent ∨ tcp2-state = time wait))

The next specification considers terminating an established connection with a close-

input. The output should contain a fin, except if there is unread data (in which case

it should contain a rst). This corresponds to the first non-conformance case explained

in Section 2.4. The specification is captured by the following formula, in which T is
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the triggered-operator as defined in NuSMV.

G(state = established→ ((input = rcv T input 6= packet with data) ∧ input = close)→
(F output = packet with fin)))

We have formalized and checked, in a similar way, specifications for all other non-

conforming cases as well as many other specifications.

We have also checked which transitions in the abstract models are reachable in the

composed system. For every transition, we take its input and starting state, and check

whether they can occur together. In this way we can find the reachable parts of model.

This proves useful when analyzing models, as the reachable parts likely harbor bugs

with the most impact. Similarly, comparing reachable parts helps reveal the most

relevant differences between implementations. The first and third non-conformances

in Section 2.4 occur in the reachable parts of the respective models. Figure 2.2 marks

these parts in green.

2.6 Conclusions and Future Work

We combined model learning, model checking and abstraction techniques to obtain

and analyze models of Windows, Linux and FreeBSD TCP server and client imple-

mentations. Composing these models together with the model of a network allowed us

to perform model checking over the composite setup and verify that any valid number

generated by one TCP entity is seen as valid number by the other TCP entity. We

have also identified breaches of the RFC’s in all operating systems, and confirmed

them by formulating temporal specification and checking them. Work in this chapter

suggests several directions for future work.

Based on our understanding of TCP, we manually defined abstractions (mappers)

that made it possible to learn models of TCP implementations. Getting the mapper

definitions right turned out to be tricky. In fact, we had to restrict our learning

experiments to valid abstractions of the sequence and acknowledgement numbers. This

proved limiting when searching for interesting rules to model check, like for example

those that would expose known implementation bugs. Such rules often concern invalid

parameters, which do not appear in the models we learned. Additionaly, we had

to manually refine our mapper due to counterexamples found by the model checker.

Learning algorithms that construct the abstractions automatically could potentially

solve this problem. We hope that extensions of the learning algorithms for register

automata as implemented in the Tomte [5] and RALib [53] tools will be able to

construct abstractions for TCP fully automatically.

Work in this chapter was severely restricted by the lack of expressivity of Mealy

machines. In order to squeeze the TCP implementation into a Mealy machine, we

had to eliminate timing based behavior as well as re-transmissions. Other frameworks

for modeling state machines might facilitate modeling these aspects. Obviously,

we would also need learning algorithms capable of generating such state machines.
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There has been some preliminary work on extending learning algorithms to timed

automata [98, 209], and to I/O transition systems [12, 210], with the additional benifit

of approximate learning. Approximate learning learns an upper and lower boundary

to the behavior of the system, instead of an exact model. This may allow to abstract

away the corner-cases in the model and the mapper, if they are not relevant for the

specifications. Extensions of this work could eliminate some of the restrictions that

we encountered.

2.A Model of Linux TCP Client

syn_rcvd SA /A(N,C)

established

A / -

established (after data)

AP+data /A(N,N)

fin_wait1

close /AF(N,C)

close_wait

FA /A(N,N)

closed

AR / -
R / -

SA /A(N,C)

AP+data /A(N,N)

close /AF(N,C) FA /A(N,N)

established (receiving)

rcv / -

AR / -
R / -

SA / R(N,Z)
AP+data / R(N,Z)

A / R(N,Z)
AR / -
FA / R(N,Z)
S /AR(Z,N)
R / -

S /AS(F,N)

FA /R(Z,Z)
SA /R(Z,Z)

AP+data /R(Z,Z)
A /R(Z,Z)

close / -

rcv / -

AP+data /A(N,N)
SA / A(N,C)

close_wait (after data)

FA /A(N,N)

close /AR(N,C)
AR / -
R / -

SA /A(N,C)

time_wait

FA /A(N,N) fin_wait2

A / -

AP+data /R(N,Z)
AR / -
R / -

SA /A(N,C)

last_ack

close /AF(N,C)

AR / -
R / -

rcv / -

SA /A(N,C)

close /AR(N,C)
AR / -
R / -

AP+data /A(N,N)

close /AF(N,C) FA /A(N,N)

SA /A(N,C)

AR / -
R / -

S /A(N,C)
AP+data /A(N,C)

SA /A(N,C)
FA /A(N,C)

AR / -
R / -

FA /A(N,N)

AP+data / R(N,Z)
SA / R(N,Z)
AR / -
S /AR(Z,N)
R / -

A / -
FA / -

AP+data / -

SA /A(N,C)

AR / -
R / -

initial

S /AR(Z,N)
FA / R(Z,Z)

AP+data / R(Z,Z)
SA / R(Z,Z)
A / R(Z,Z)

close / -

syn_sent

connect /S(F,Z)

FA / R(Z,Z)
S /AR(Z,N)

SA / R(Z,Z)
AP+data / R(Z,Z)

A / R(Z,Z)

S /AS(C,N)

SA /A(N,N)

close / -

R / -

AR / -

Figure 2.4: Learned model for Linux TCP Client. We use all the pruning strategies

that we used for Window 8 apart from merging transitions with the same output.
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2.B Model of FreeBSD TCP Client
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close_wait/close_wait (after data)
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close / AF(N,C)

closed

AR / -
SA / AR(N,C)
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SA / R(N,Z)

AP+data / R(N,Z)
A / R(N,Z)
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close / -

AP+data / A(F,F)
A / A(F,F)

SA / A(F,F)
FA / A(F,F)
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close / -
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SA / A(N,C)
FA / A(N,C)

FA / A(N,N)
AP+data / A(N,N)

last_ack

close / AF(N,C)

AR / -
SA / AR(N,C)
S / AR(N,C)
R / -

FA / A(N,N)

AP+data / R(N,Z)
AR / -
S / AR(N,C)
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R / -
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S / AR(N,C)
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S / AR(Z,N)
FA / R(Z,Z)

AP+data / R(Z,Z)
SA / R(Z,Z)
A / R(Z,Z)

close / -

syn_sent

connect / S(F,Z)

FA / R(Z,Z)
S / AR(Z,N)

SA / R(Z,Z)
AP+data / R(Z,Z)

A / R(Z,Z)
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close / -

R / -
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Figure 2.5: Learned model for FreeBSD TCP Client. We use all the pruning strategies

that we used for Window 8 apart from merging transitions with the same output.





Chapter 3

Model Learning and Model Checking of

SSH Implementations

We apply model learning on three SSH implementations to infer state machine

models, and then use model checking to verify that these models satisfy basic

security properties and conform to the RFCs. Our analysis showed that all

tested SSH server models satisfy the stated security properties, but uncovered

several violations of the standard.

3.1 Introduction

SSH is a security protocol that is widely used to interact securely with remote machines.

The Transport layer of SSH has been subjected to security analysis [219], incl. analyses

that revealed cryptographic shortcomings [18,25,167].

Whereas these analyses consider the abstract cryptographic protocol, this chapter

looks at actual implementations of SSH, and investigates flaws in the program logic

of these implementations, rather than cryptographic flaws. Such logical flaws have

occurred in implementations of other security protocols, notably TLS, with Apple’s

’goto fail’ bug and the FREAK attack [32]. For this we use model learning (a.k.a. active

automata learning) [19,170,205] to infer state machines of three SSH implementations,

which we then analyze by model checking for conformance to both functional and

security properties.

The properties we verify for the inferred state machines are based on the RFCs that

specify SSH [221–224]. These properties are formalized in LTL and verified using

NuSMV [66]. We use a model checker since the models are too complex for manual

inspection (they are trivial for NuSMV). Moreover, by formalizing the properties

we can better assess and overcome vagueness or under-specification in the RFC

standards.

This chapter is born out of two recent theses [138, 208], and is to our knowledge

the first combined application of model learning and model checking in verifying
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SSH implementations, or more generally, implementations of any network security

protocol.

Related work Chen et al. [60] use the MOPS software model checking tool to detect

security vulnerabilities in the OpenSSH C implementation due to violation of folk

rules for the construction of secure programs such as “Do not open a file in writing

mode to stdout or stderr”. Udrea et al. [203] also investigated SSH implementations

for logical flaws. They used a static analysis tool to check two C implementations of

SSH against an extensive set of rules. These rules not only express properties of the

SSH protocol logic, but also of message formats and support for earlier versions and

various options. Our analysis only considers the protocol logic. However, their rules

were tied to routines in the code, so had to be slightly adapted to fit the different

implementations. In contrast, our properties are defined at an abstract level so do

not need such tailoring. Moreover, our black-box approach means we can analyze any

implementation of SSH, not just open-source C implementations.

Formal models of SSH in the form of state machines have been used before, namely

for a manual code review of OpenSSH [174], formal program verification of a Java

implementation of SSH [173], and for model based testing of SSH implementations [39].

All this research only considered the SSH Transport layer, and not the other SSH

protocol layers.

Model learning has previously been used to infer state machines of EMV bank cards [3],

electronic passports [11], hand-held readers for online banking [59], and implementati-

ons of TCP [88] and TLS [181]. Some of these studies relied on manual analysis of

learned models [3, 11,181], but some also used model checkers [59,88].

Instead of using active learning as we do, it is also possible to use passive learning to

obtain protocol state machines [218]. Here network traffic is observed, and not actively

generated. This can then provide a probabilistic characterization of normal network

traffic, but it cannot uncover implementation flaws that occur in strange message

flows, which is our goal.

3.2 Model Learning

3.2.1 Mealy Machines

A Mealy machine is a tuple M = (I,O,Q, q0, δ, λ), where I is a finite set of inputs,

O is a finite set of outputs, Q is a finite set of states, q0 ∈ Q is the initial state,

δ : Q × I → Q is a transition function, and λ : Q × I → O is an output function.

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q, i ∈ I
and σ ∈ I∗, λ(q, ε) = ε and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy

machine M is defined by function AM : I∗ → O∗ with AM(σ) = λ(q0, σ), for σ ∈ I∗.
Mealy machines M1 and M2 are equivalent, denoted M1 ≈ M2, iff AM1 = AM2 .

Sequence σ ∈ I∗ distinguishes M1 and M2 if and only if AM1(σ) 6= AM2(σ).
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3.2.2 MAT Framework

The most efficient algorithms for model learning (see [119] for a recent overview) all

follow the pattern of a minimally adequate teacher (MAT) as proposed by Angluin [19].

Here learning is viewed as a game in which a learner has to infer an unknown automaton

by asking queries to a teacher. The teacher knows the automaton, which in our setting

is a Mealy machine M, also called the System Under Learning (sul). Initially, the

learner only knows the input alphabet I and output alphabet O of M. The task of

the learner is to learn M via two types of queries:

• With a membership query, the learner asks what the response is to an input

sequence σ ∈ I∗. The teacher answers with the output sequence in AM(σ).

• With an equivalence query, the learner asks whether a hypothesized Mealy machine

H is correct, that is, whether H ≈ M. The teacher answers yes if this is the

case. Otherwise it answers no and supplies a counterexample, which is a sequence

σ ∈ I∗ that triggers a different output sequence for both Mealy machines, that is,

AH(σ) 6= AM(σ).

The MAT framework can be used to learn black-box models of software. If the behavior

of a software system, or System Under Learning (sul), can be described by some

unknown Mealy machineM, then a membership query can be implemented by sending

inputs to the sul and observing resulting outputs. An equivalence query can be

approximated using a conformance testing tool [137] via a finite number of test queries.

A test query consists of asking the sul for the response to an input sequence σ ∈ I∗,
similar to a membership query. Note that this cannot rule out that there is more

behavior that has not been discovered.

3.2.3 Abstraction

Most current learning algorithms are only applicable to Mealy machines with small

alphabets comprising abstract messages. Practical systems typically have parameteri-

zed input/output alphabets, whose application triggers updates on the system’s state

variables. To learn these systems we place a mapper between the learner and the sul.

The mapper is a transducer which translates concrete inputs to abstract inputs and

concrete outputs to abstract outputs. For a thorough discussion of mappers, we refer

to [10].

3.3 The Secure Shell Protocol

The Secure Shell Protocol (or SSH) is a protocol used for secure remote login and

other secure network services over an insecure network. It runs as an application layer

protocol on top of TCP, which provides reliable data transfer, but does not provide

any form of connection security. The initial version of SSH was superseded by a second
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Figure 3.1: SSH protocol layers

version (SSHv2), after the former was found to contain design flaws which could not be

fixed without losing backwards compatibility [93]. This work focuses on SSHv2.

SSHv2 follows a client-server paradigm. The protocol consists of three layers (Fi-

gure 3.1):

1. The transport layer protocol (RFC 4253 [224]) forms the basis for any communica-

tion between a client and a server. It provides confidentiality, integrity and server

authentication as well as optional compression.

2. The authentication protocol (RFC 4252 [221]) is used to authenticate the client to

the server.

3. The connection protocol (RFC 4254 [222]) allows the encrypted channel to be

multiplexed in different channels. These channels enable a user to run multi-

ple applications, such as terminal emulation or file transfer, over a single SSH

connection.

Each layer has its own specific messages. The SSH protocol is interesting in that

outer layers do not encapsulate inner layers, and different layers can interact. For this

reason, we opt to analyze SSH as a whole, instead of analyzing its constituent layers

independently. Below we discuss each layer, outlining the relevant messages which

are later used in learning, and characterizing the so-called happy flow that a normal

protocol run follows.

At a high level, a typical SSH protocol run uses the three constituent protocols in

the order given above: after the client establishes a TCP connection with the server,

(1) the two sides use the Transport layer protocol to negotiate key exchange and

encryption algorithms, and use these to establish session keys, which are then used

to secure further communication; (2) the client uses the user authentication protocol

to authenticate to the server; (3) the client uses the connection protocol to access

services on the server, for example the terminal service.

3.3.1 Transport Layer

SSH runs over TCP, and provides end-to-end confidentiality and integrity using session

keys. Once a TCP connection has been established with the server, these session

keys are securely negotiated using a key exchange algorithm, the first step of the

protocol. The key exchange begins by the two sides exchanging their preferences for
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the key exchange algorithm to be used, as well as encryption, compression and hashing

algorithms. Preferences are sent with a kexinit message. Subsequently, key exchange

using the negotiated algorithm takes place. Following this algorithm, one-time session

keys for encryption and hashing are generated by each side, together with an identifier

for the session. The main key exchange algorithm is Diffie-Hellman, which is also

the only one required by the RFC. For the Diffie-Hellman scheme, kex30 and kex31

are exchanged to establish fresh session keys. These keys are used from the moment

the newkeys command has been issued by both parties. A subsequent sr auth

requests the authentication service. The happy flow thus consists of the succession of

the three steps comprising key exchange, followed up by a successful authentication

service request. The sequence is shown in Figure 3.2.

pre-kex kexed

KEX30/
    KEX31 pre-authinit

KEXINIT/
    KEXINIT keyed

NEWKEYS/
    NEWKEYS

SR_AUTH/
    SR_ACCEPT

Figure 3.2: The happy flow for the Transport layer.

Key re-exchange [224, p. 23], or rekeying, is an almost identical process, the difference

being that instead of taking place at the beginning, it takes place once session keys

are already in place. The purpose is to renew session keys so as to foil potential

replay attacks [223, p. 17]. It follows the same steps as key exchange. A fundamental

property of rekeying is that it should preserve the state; that is, after the rekeying

procedure is completed, the protocol should be in the same state as it was before the

rekeying started. The only thing that changes is that the new keys negotiated through

rekeying are now used, instead of the old ones.

3.3.2 Authentication Layer

Once a secure tunnel has been established, the client can authenticate. For this, four

authentication methods are defined in RFC 4252 [221]: password, public-key, host-

based and none. The authentication request includes a user name, service name and

authentication data, which consists of both the authentication method as well as the

data needed to perform the actual authentication, such as the password or public key.

The happy flow for this layer, as shown in Figure 3.3, is simply a single protocol step

that results in a successful authentication. The messages ua pw ok and ua pk ok

achieve this for respectively password and public key authentication.

pre-auth auth

UA_PK_OK/UA_SUCCESS
   UA_PW_OK/UA_SUCCESS

Figure 3.3: The happy flow for the user Authentication layer.
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3.3.3 Connection Layer

Successful authentication makes services of the Connection layer available. The

Connection layer enables the user to open and close channels of various types, with

each type providing access to specific services. Of the various services available, we

focus on the remote terminal over a session channel, a classical use of SSH. The

happy flow consists of opening a session channel, ch open, requesting a “pseudo

terminal” ch request pty, optionally sending and managing data via the messages

ch send data, ch window adjust, ch send eof, and eventually closing the

channel via ch close, as depicted in Figure 3.4.

auth

chanCH_OPEN/
    CH_OPEN_SUCCESS

pty

CH_REQUEST_PTY/
    CH_SUCCESS

CH_CLOSE/
    CH_CLOSE_SUCCESS

CH_SEND_DATA...

Figure 3.4: The happy flow for the Connection layer.

3.4 The Learning Setup

The learning setup consists of three components: the learner, the mapper and the

sul. The learner generates abstract inputs, representing SSH messages. The mapper

transforms these messages into well-formed SSH packets and sends them to the sul.

The sul sends response packets back to the mapper, which in turn, translates these

packets to abstract outputs. The mapper then sends the abstract outputs back to

the learner.

The learner uses LearnLib [178], a Java library implementing L∗ based algorithms

for learning Mealy machines. The mapper is based on Paramiko, an open-source

SSH implementation written in Python1. We opted for Paramiko because its code is

relatively well structured and documented. The sul can be any existing implementation

of an SSH server. The three components communicate over sockets, as shown in

Figure 3.5.

SSH is a complex client-server protocol. Work in this chapter is therefore concentrated

on learning models of the implementation of the server, and not of the client. We

1Paramiko is available at http://www.paramiko.org/

  Learner    Mapper  
               "KEX30"             

               "KEX31"              
    SUT    

    (seq=16, len=358, payload=...)    

    (seq=17, len=214, payload=...)    

Figure 3.5: The SSH learning setup.

http://www.paramiko.org/
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further restrict learning to only exploring the terminal service of the Connection layer,

as we consider it to be the most interesting from a security perspective. Algorithms for

encryption, compression and hashing are left to default settings and are not purposefully

explored. Also, the starting state of the sul is one where a TCP connection has

already been established and where SSH versions have been exchanged, which are

prerequisites for starting the Transport layer protocol.

3.4.1 The Learning Alphabet

The alphabet we use consists of inputs, which correspond to messages sent to the

server, and outputs, which correspond to messages received from the server. We split

the input alphabet into three parts, one for each of the protocol layers.

Learning does not scale with a growing input alphabet, and since we are only learning

models of servers, we remove those inputs that are not intended to ever be sent to the

server2. Furthermore, from the Connection layer we only use messages for channel

management and the terminal functionality. Finally, because we will only explore

protocol behavior after SSH versions have been exchanged, we exclude the messages

for exchanging version numbers.

The resulting lists of inputs for the three protocol layers are given in Tables 3.1-3.3.

In some experiments, we used only a subset of the most essential inputs, to further

speed up experiments. This restricted alphabet significantly decreases the number of

queries needed for learning models while only marginally limiting explored behavior.

We discuss this again in Section 3.5. Inputs included in the restricted alphabet are

marked by ’*’ in the tables below.

Table 3.1 lists the Transport layer inputs. We include a version of the kexinit message

with first kex packet follows disabled. This means no guess [224, p. 17] is

attempted on the sul’s parameter preferences. Consequently, the sul will have to send

its own kexinit in order to convey its own parameter preferences before key exchange

can proceed. Also included are inputs for establishing new keys (kex30, newkeys),

disconnecting (disconnect), as well as the special inputs ignore, unimpl and debug.

The latter are not interesting, as they are normally ignored by implementations. Hence

they are excluded from our restricted alphabet. disconnect could take a long time

to execute, so was also excluded.

The Authentication layer defines a single client message type for the authentication

requests [221, p. 4]. Its parameters contain all information needed for authentication.

Four authentication methods exist: none, password, public key and host-based. Our

mapper supports all methods except host-based authentication because some SUTs

don’t support this feature. Both the public key and password methods have ok

and nok variants, which provide respectively correct and incorrect credentials. Our

2This means we exclude the messages service accept, ua accept, ua failure, ua banner,

ua pk ok, ua pw changereq, ch success and ch failure from our alphabet.
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Table 3.1: Transport layer inputs

Message Description

disconnect Terminates the current connection [224, p. 23]

ignore Has no intended effect [224, p. 24]

unimpl Intended response to unrecognized messages [224, p. 25]

debug Provides other party with debug information [224, p. 25]

kexinit* Sends parameter preferences [224, p. 17]

kex30* Initializes the Diffie-Hellman key exchange [224, p. 21]

newkeys* Requests to take new keys into use [224, p. 21]

sr auth* Requests the authentication protocol [224, p. 23]

sr conn* Requests the connection protocol [224, p. 23]

restricted alphabet supports only public key authentication, as the implementations

processed this faster than the other authentication methods.

Table 3.2: Authentication layer inputs

Message Description

ua none Authenticates with the “none” method [221, p. 7]

ua pk ok* Provides a valid name/key pair [221, p. 8]

ua pk nok* Provides an invalid name/key pair [221, p. 8]

ua pw ok Provides a valid name/password pair [221, p. 10]

ua pw nok Provides an invalid name/password pair [221, p. 10]

The Connection layer allows clients to manage channels and request services over them.

In accordance with our learning goal, our mapper only supports inputs for requesting

terminal emulation, plus inputs for channel management as shown in Table 3.3. The

restricted alphabet only supports the most general channel management inputs, and

excludes those not expected to produce state change.

Table 3.3: Connection layer inputs

Message Description

ch open* Opens a new channel [222, p. 5]

ch close* Closes a channel [222, p. 9]

ch eof* Indicates that no more data will be sent [222, p. 9]

ch data* Sends data over the channel [222, p. 7]

ch edata Sends typed data over the channel [222, p. 8]

ch window adjust Adjusts the window size [222, p. 7]

ch request pty* Requests terminal emulation [222, p. 11]

The output alphabet includes all messages an SSH server generates, which may include,

with identical meaning, any of the messages defined as inputs. This also includes respon-

ses to various requests: kex31 [224, p. 21] as reply to kex30, sr succes in response

to service requests (sr auth and sr conn), ua success and ua failure [221, p.
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5,6] in response to authentication requests, and

ch open success [222, p. 6] and ch success [222, p. 10] , in positive response to

ch open and ch request pty respectively. To these outputs, we add no resp

for when the sul generates no output, and the special outputs ch none, ch max

and no conn, and buffered, which we discuss in the next subsections.

3.4.2 The Mapper

The mapper must provide a translation between abstract messages and well-formed

SSH messages: it has to translate abstract inputs listed in Tables 3.1-3.3 to actual SSH

packets, and translate the SSH packets received in answer to our abstract outputs.

If no answer is received on an input, the mapper must return an output indicating

timeout, which in our case is the no resp message.

The sheer complexity of the mapper meant that it was easier to adapt an existing

SSH implementation, rather than construct the mapper from scratch. After all, in

many ways the mapper acts similar to an SSH client. Paramiko already provides

mechanisms for encryption/decryption, as well as routines for constructing and sending

the different types of packets, and for receiving them. These routines are called by

control logic dictated by Paramiko’s own state machine. The mapper was constructed

by replacing this control logic with one dictated by messages received from the learner.

The technical nature of the mapper and the fact that it was adapted from an existing

codebase makes it difficult to formalize accurately. We hence only give an informal

description of its behavior.

The mapper maintains a set of state variables to record parameters of the ongoing

session, including the server’s preferences for key exchange and encryption algorithm,

parameters of these protocols, and, once it has been established, the session key.

These parameters are updated when receiving messages from the server and used to

concretize inputs to actual SSH messages to the server.

For example, upon receiving a kexinit from the sul, the mapper saves the sul’s

preferences for key exchange, hashing and encryption algorithms. Initially these

parameters are all set to the defaults that any server should support, as required by

the RFC. On receiving kex31 in response to the kex30 input, the mapper saves the

hash, as well as the new keys. Finally, a newkeys response prompts the mapper to

use the new keys negotiated earlier in place of the older ones, if such existed.

The mapper also contains a buffer for storing opened channels, which is initially

empty. On a ch open from the learner, the mapper adds a channel to the buffer

with a randomly generated channel identifier; on a ch close, it removes the channel

(if there was any). The buffer size, or the maximum number of opened channels, is

limited to one. Initially the buffer is empty. The mapper also stores the sequence

number of the last received message from the sul. This number is then used when

constructing unimpl inputs.

In the following cases, inputs are answered by the mapper directly instead of being
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sent to the sul to find out its response: (1) on receiving a ch open input if the

buffer has reached the size limit, the mapper directly responds with ch max; (2) on

receiving any input operating on a channel (all Connection layer inputs other than

ch open) when the buffer is empty, the mapper directly responds with ch none;

(3) if connection with the sul was terminated, the mapper responds with a no conn

message, as sending further messages to the sul is pointless in that case.

3.4.3 Practical Complications

SSH implementations even behind the mapper abstraction may not behave like

deterministic Mealy machines, a prerequisite for the learning algorithm to succeed.

Sources of non-determinism are:

1. Underspecification in the SSH specification (for example, by not specifying the

order of certain messages) allows some non-deterministic behavior. Even if client

and server do implement a fixed order for messages they sent, the asynchronous

nature of communication means that the interleaving of sent and received messages

may vary. Moreover, client and server are free to intersperse debug and ignore

messages at any given time3

2. Timing is another source of non-deterministic behavior. For example, the mapper

might time-out before the sul had sent its response. Some suls also behave

unexpectedly when a new input is received too shortly after the previous one.

Hence in our experiments we adjusted time-out periods accordingly so that neither

of these events occur, and the sul behaves deterministically all the time.

To detect non-determinism, the mapper caches all observations in an SQLite database

and verifies if new observations are consistent with previous ones. If not, it raises a

warning, which then needs to be manually investigated. We analyzed each warning

until we found a setting under which behavior was deterministic.

The cache also acts as a cheap source of responses for already answered queries.

Finally, by re-loading the cache from a previous experiment, we were able to start

from where this experiment left off. This proved useful, as experiments could take

several days.

Another practical problem besides non-determinism is that an SSH server may produce

a sequence of outputs in response to a single input. This means it is not behaving as

a Mealy machines, which allows for only one output. To deal with this, the mapper

concatenates all outputs into one, producing a single output which it delivers to the

learner. The sequence in which the concatenated outputs are received is preserved in

the produced output.

A final challenge is presented by forms of ‘buffering’, which we encountered in two

situations. Firstly, some implementations buffer incoming requests during rekey; only

once rekeying is complete are all these messages processed. This leads to a newkeys

3The ignore messages are aimed to thwart traffic analysis.
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response (indicating rekeying has completed), directly followed by all the responses to

the buffered requests. This would lead to non-termination of the learning algorithm,

as for every sequence of buffered messages the response differs. To prevent this, we

treat the sequence of queued responses as the single output buffered.

A different form of buffering occurs when opening and closing channels, since a sul can

close only as many channels as have previously been opened. Learning this behavior

would lead to an infinite state machine, as we would need a state ‘there are n channels

open’ for every number n. For this reason, we restrict the number of simultaneously

open channels to one. The mapper returns a custom response ch max to a ch open

message whenever this limit is reached.

3.5 Learning Results

We use the setup described in Section 3.4 to learn models for OpenSSH, Bitvise and

DropBear SSH server implementations. OpenSSH represents the focal point, as it

is the most popular implementation of SSH (with over 80 percent of market share

in 2008 [18]) and the default server for many UNIX-based systems. DropBear is an

alternative to OpenSSH designed for low resource systems. Bitvise is a well-known

proprietary Windows-only SSH implementation.

In our experimental setup, learner and mapper ran inside a Linux Virtual Machine.

OpenSSH and DropBear were learned over a localhost connection, whereas Bitvise was

learned over a virtual connection with the Windows host machine. We have adapted

the setting of timing parameters to each implementation.

OpenSSH was learned using a full alphabet, whereas DropBear and Bitvise were

learned using a restricted alphabet (as defined in Subsection 3.4.1). The reason

for using a restricted alphabet was to reduce learning times. Based on the model

learned for OpenSSH (the first implementation analyzed) and the specification, we

excluded inputs that seemed unlikely to produce state change (such as debug or

unimpl). We also excluded inputs that could take a long time to process (such as

disconnect) but were not were not needed to visit all states in the happy flow. We

excluded, for example, the user/password based authentication inputs (ua pw ok

and ua pw nok) as they would take the system 2-3 seconds to respond to. By

contrast, public key authentication resulted in quick responses. We explain the more

intricate case for disconnect when we discuss the learned models.

For generating test queries we used random and exhaustive variants of the testing

algorithm described in [191], which generate efficient test suites. Tests generated

comprise an access sequence, a middle section of length k and a distinguishing sequence.

The exhaustive variant generates tests for all possible middle sections of length k and

all states. Passing all tests then provides some notion of confidence, namely, that

the learned model is correct unless the (unknown) model of the implementation has

at least k more states than the learned hypothesis. The random variant produces

tests with randomly generated middle sections. No formal confidence is provided, but
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past experience shows this to be more effective at finding counterexamples since k

can be set to higher values. We executed a random test suite with k of 4 comprising

40000 tests for OpenSSH, and 20000 tests for Bitvise and DropBear. We then ran an

exhaustive test suite with k of 2 for all implementations.

Extending our test suite are test queries derived manually from counterexamples

generated by model checking the learned model. These counterexamples have to

be checked on the sul to see whether the sul is indeed non-compliant with the

corresponding property or the learned model is wrong. As the properties we formalized

were safety properties, all resulting counterexamples were of finite length. We hence

were able to manually derive tests from them, and add these tests to the test suite. In

the case of DropBear, one of the counterexamples found by the model checker was

an actual counterexample for the learner (it invalidated the learned model). This

counterexample could not be found by our exhaustive test algorithm using a k of 2.

Indeed, the hypothesis the learner produced after processing this counterexample had

two additional states, indicating that a k of 3 would have been necessary. Such a test

setting would have required the costly execution of 122836 tests on the invalidated

learned model and 209911 on the final model. This shows the limitation of exhaustive

test algorithms in finding counterexamples. It also provides a compelling argument

for integrating a model checker into the testing loop for each hypothesis, rather than

only for the learned model.

Table 3.4 describes the exact versions of the systems analyzed together with statistics

on learning and testing: (1) the number of states in the learned model, (2) the number

of hypotheses built during the learning process and (3) the total number of learning and

test queries run. For test queries, we only consider those run on the last hypothesis. All

learned models are available at 4. Statistics give a glimpse into the issue of scalability.

Assuming each input took 0.5 seconds to process, and an average query length of 10,

to perform 40000 queries would have taken roughly 55 hours. This is consistent with

the time experiments took, which span several days. The long duration compelled us

to resort to restricted alphabets, which lead to reduction in the number of queries

needed. Our work could have benefited from parallel execution.

Table 3.4: Statistics for learning experiments

SUT States Hypotheses Mem. Q. Test Q.

OpenSSH 6.9p1-2 31 4 19836 76418

Bitvise 7.23 65 15 24996 58423

DropBear v2014.65 29 8 8357 64478

The large number of states is down to several reasons. First of all, some systems

exhibited buffering behavior. In particular, Bitvise would queue responses for higher

layer inputs sent during rekey, and would deliver them all at once after rekeying was

done. Interestingly, the size of the queue affected how Bitvise reacted to disconnect

4https://gitlab.science.ru.nl/pfiteraubrostean/Learning-SSH-Paper/tree/master/models

https://gitlab.science.ru.nl/pfiteraubrostean/Learning-SSH-Paper/tree/master/models
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during rekey, a lower layer input. The longer the queue, the more time it took for

BitVise to process and thus, terminate the connection. This forced us to exclude

disconnect from the restricted alphabet, as its processing time could grow to several

seconds. Rekeying was another major contributor to the number of states. For each

state where rekeying is possible, the sequence of transitions constituting the complete

rekeying process should lead back to that state. This leads to two additional rekeying

states for every state allowing rekey. Many states were also added due to the mapper

generated outputs ch none or ch max, outputs which signal that no channel is

open or that the maximum number of channels have been opened.

Figure 3.6 shows the model obtained for OpenSSH, with some edits to improve

readability. The figure collects the states into 3 clusters, indicated by the rectangles,

where each cluster corresponds to one of the protocol layers. We eliminate redundant

states and information induced by the mapper, as well as states present in successful

rekeying sequences. Wherever rekeying was permitted, we replace the rekeying states

and transitions by a single REKEY SEQUENCE transition. We also factor out edges

common to states within a cluster. We replace common disconnecting edges, by one

edge from the cluster to the disconnect state. Common self loop edges are colored, and

the actual i/o information only appears on one edge. Transitions with similar start

and end states are joined together on the same edge. Transition labels are kept short

by regular expressions(UA * stands for inputs starting with UA ) or by factoring

out common start strings. Green edges highlight the happy flow. ’+’ concatenates

multiple outputs.

On analyzing Figure 3.6, we notice that the happy flow, colored in green, is fully

explored and mostly matches our earlier description of it5. Also explored is what

happens when a rekeying sequence is attempted. We notice that rekeying is only

allowed in states of the Connection layer. Strangely, for these states, rekeying is

not state preserving, as the generated output on receiving a sr auth, sr conn or

kex30 changes from unimpl to no resp. This leads to two sub-clusters of states,

one before the first rekey, the other afterward. In all other states, the first step of a

rekeying (kexinit) yields (unimpl), while the last step (newkeys) causes the system

to disconnect.

We also note the intricate authentication behavior: after an unsuccessful authentication

attempt the only authentication method still allowed is password authentication.

Finally, only Bitvise allowed multiple terminals to be requested over the same channel.

As depicted in the model, OpenSSH abruptly terminates on requesting a second

terminal. DropBear exhibits a similar behavior.

We warn the reader of an inaccuracy in the learned models caused by the mapper. The

inaccuracy was detected after experiments were done and is still present. Analyzing

the initial state, we remark how kexinit appears as response to most inputs from that

5The only exception is in the Transport layer, where unlike in our happy flow definition, the server

is the first to send the newkeys message. This is also accepted behavior, as the protocol does not

specify which side should send newkeys first.
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state. This behavior is odd, since we expected kexinit responses to be given only to

kexinit messages. Upon closer inspection, we found that a kexinit message was sent

by the server just after SSH versions had been exchanged, before the server received

any input from the learner. Our mapper buffered this kexinit message and falsely

considered it as a response to the first input sent by the learner. Consequently, kexinit

appears as response to all inputs in the initial state, though it was actually generated

before any input was sent. Furthermore, when parsing this kexinit response, the

mapper could silently send kexinit to the server effectively completing preference

exchange. This happened if the input was not kexinit and did not cause the connection

to terminate. Later processing of kexinit messages is done normally (such as during

rekey). Readers should keep this inaccuracy in mind when interpreting the model

of Figure 3.6. The inaccuracy affects solely transitions from the start state. In the

future, we hope to address this inaccuracy, reduce mapper-induced redundant states

and update 4 with improved models

3.6 Security Specifications

A NuSMV model is specified by a set of finite variables together with a transition-

function that describes changes on these variables. Specifications in temporal logic,

such as CTL and LTL, can be checked for truth on specified models. NuSMV provides

a counterexample if a given specification is not true. We generate NuSMV models

automatically from the learned models. Generation proceeds by first defining a NuSMV

file with three variables, corresponding to inputs, outputs and states. The transition-

function is then extracted from the learned model and appended to this file. This

function updates the output and state variables for a given valuation of the input

variable and the current state. Figure 3.7 gives an example of a Mealy machine and its

associated NuSMV model. The NuSMV models derived from the learned SSH models,

and the formalized properties are available at 4.

The remainder of this section defines the properties we formalized and verified. We

group these properties into four categories:

1. basic characterizing properties, properties which characterize the mapper and sul

assembly at a basic level. These hold for all implementations.

2. security properties, these are properties fundamental to achieving the main security

goal of the respective layer.

3. key re-exchange properties, or properties regarding the rekey operation (after the

initial key exchange was done).

4. functional properties, which are extracted from the SHOULD’s and the MUST’s

of the RFC specifications. They may have a security impact.

A key point to note is that properties are checked not on the actual concrete model

of the sul, but on an abstraction of the sul that is induced by the mapper. This

is unlike in [88], where properties were checked on a concretization of the learned
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q0start

q1

BEGIN/OK

MSG/NOK

BEGIN/OK

MSG/ACK

MODULE main

VAR s t a t e : {q0 , q1 } ;

inp : {BEGIN, MSG} ;

out : {OK, NOK, ACK} ;

ASSIGN

i n i t ( s t a t e ) := q0 ;

next ( s t a t e ) := case

s t a t e = q0 & inp = BEGIN: q1 ;

s t a t e = q0 & inp = MSG: q0 ;

s t a t e = q1 & inp = BEGIN: q1 ;

s t a t e = q1 & inp = MSG: q1 ;

e sac ;

out := case

s t a t e = q0 & inp = BEGIN: OK;

s t a t e = q0 & inp = MSG: NOK;

s t a t e = q1 & inp = BEGIN: OK;

s t a t e = q1 & inp = MSG: ACK;

esac ;

Figure 3.7: Mealy machine + associated NuSMV code

model obtained by application of a reverse mapping. Building a reverse mapper is

far from trivial given the mapper’s complexity. Thus we need to be careful when

we interpret model checking results for the learned model. Also, we must be aware

that when some property does not hold for the abstract model, and the model checker

provides a counterexample, we still need to check whether this counterexample is an

actual run of the abstraction of the sul induced by the mapper. If this is not the

case then the counterexample demonstrates that the learned model is incorrect. In

the previous section we noted an inconsistency between learned models and how the

systems behave due to mapper-induced behavior. The inconsistency has minimal

impact on the properties we analyze as it impacts only transitions from the initial

state, and its effects are clear and can be accounted for.

Before introducing the properties, we mention some basic predicates and conventions

we use in their definition. The happy flow in SSH consists in a series of steps: the

user (1) exchanges keys, (2) requests for the authentication service, (3) supplies valid

credentials to authenticate and finally (4) opens a channel. Whereas step (1) is

complex, the subsequent steps can be captured by the simple predicates hasReqAuth,

validAuthReq and hasOpenedChannel respectively. The predicates are defined in

terms of the output generated at a given moment, with certain values of this output

indicating that the step was performed successfully. For example, ch open success

indicates that a channel has been opened successfully. Sometimes we also need the

input that generated the output, so as to distinguish this step from other steps. In

particular, requesting the authentication service is distinguished from requesting the

connection service by sr auth. To these predicates, we add predicates for valid,

invalid and all authentication methods, a predicate for the receipt of newkeys from
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the server, and receipt of kexinit, which can also be seen as initiation of key (re-)

exchange. These last predicates have to be tweaked in accordance with the input

alphabet used and with the output the sul generated (kexinit could be sent in

different packaging, either alone, or joined by a different message). Their formulations

below are for the OpenSSH server. Finally, connLost indicates that connection was

lost, and endCondition is the condition after which higher layer properties no longer

have to hold.

hasReqAuth := inp=SR AUTH ∧ out=SR ACCEPT;

validAuthReq := out=UA PK OK ∨ out=UA PW OK;

hasOpenedChannel := out=CH OPEN SUCCESS;

validAuthReq := inp=UA PK OK ∨ inp=UA PW OK;

invAuthReq := inp=UA PK NOK ∨ inp=UA PW NOK ∨ inp=UA NONE;

authReq := validAuthReq ∨ invalidAuthReq ;

receivedNewKeys := out=NEWKEYS ∨ out=KEX31 NEWKEYS;

kexStarted := out=KEXINIT ;

connLost := out=NO CONN ∨ out=DISCONNECT;

endCondition := kexStarted ∨ connLost ;

Our formulation uses NuSMV syntax. We also use the weak until operator W, which

is not supported by NuSMV, but can be easily defined in terms of the until operator U

and globally operator G that are supported: pW q = pU q |Gp. Many of the higher

layer properties we formulate should hold only until a disconnect or a key (re-)exchange

happens, hence the definition of the endCondition predicate. This is because the

RFCs don’t specify what should happen when no connection exists. Moreover, higher

layer properties in the RFCs only apply outside of rekey sequences, as inside a rekey

sequence the RFCs advise implementations to reject all higher layer inputs, regardless

of the state before the rekey.

3.6.1 Basic Characterizing Properties

In our setting, a single TCP connection is made and once this connection is lost (e.g.

because the system disconnects) it cannot be re-established. The moment a connection

is lost is marked by generation of the no conn output. From this moment onwards,

the only outputs encountered are the no conn output (the mapper tried but failed

to communicate with the sul), or outputs generated by the mapper directly, without

querying the system. The latter are ch max (channel buffer is full) and ch none

(channel buffer is empty). With these outputs we define Property 3.1 which describes

the “one connection” property of our setup.

Property 3.1. G ( out=NO CONN →
G ( out=NO CONN ∨ out=CH MAX ∨ out=CH NONE) )

Outputs ch max and ch none are still generated because of a characteristic we

touched on in Subsection 3.4.2. The mapper maintains a buffer of open channels and

limits its size to 1. From the perspective of the mapper, a channel is open, and thus

added to the buffer, whenever ch open is received from the learner, regardless if
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a channel was actually opened on the sul. In particular, if after opening a channel

via ch open an additional attempt to open a channel is made, the mapper itself

responds by ch max without querying the sul. This continues until the learner

closes the channel by ch close, prompting removal of the channel and the sending

of an actual CLOSE message to the sul (hence out!=ch none). A converse property

can be formulated in a similar way for when the buffer is empty after a ch close, in

which case subsequent ch close messages prompt the mapper generated ch none,

until a channel is opened via ch open and an actual OPEN message is sent to the

sul. Conjunction of these two behaviors forms Property 3.2.

Property 3.2. (G ( inp=CH OPEN) →
X ( ( inp=CH OPEN → out=CH MAX)

W ( inp=CH CLOSE ∧ out !=CH NONE) ) ) ∧
(G ( inp=CH CLOSE) →

X ( ( inp=CH CLOSE → out=CH NONE)

W ( inp=CH OPEN ∧ out !=CH MAX) ) )

3.6.2 Security Properties

In SSH, upper layer services rely on security guarantees ensured by lower layers. So

these services should not be available before the lower layers have completed. For

example, the authentication service should only become available after a successful

key exchange and the setting up of a secure tunnel by the Transport layer, otherwise

the service would be running over an unencrypted channel. Requests for this service

should therefore not succeed unless key exchange was performed successfully.

Key exchange involves three steps that have to be performed in order but may be

interleaved by other actions. Successful authentication necessarily implies successful

execution of the key exchange steps. We can tell each key exchange step was successful

from the values of the input and output variables. Successful authentication request is

indicated by the predicate defined earlier, hasReqAuth. Following these principles, we

define the LTL specification in Property 3.3, where O is the once operator. Formula

Op is true at time t if p held in at least one of the previous time steps t′ ≤ t.

Property 3.3. G ( hasReqAuth →
O ( ( inp=NEWKEYS ∧ out=NO RESP) ∧

O ( ( inp=KEX30 ∧ out=KEX31 NEWKEYS) ∧
O ( out=KEXINIT) ) ) )

Apart from a secure connection, Connection layer services also assume that the client

behind the connection was authenticated. This is ensured by the Authentication

layer by means of an authentication mechanism, which only succeeds, and thus

authenticates the client, if valid credentials are provided. For the implementation

to be secure, there should be no path from an unauthenticated to an authenticated

state without the provision of valid credentials. We consider an authenticated state

as a state where a channel has been opened successfully, described by the predicate
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hasOpenedChannel. Provision of valid/invalid credentials is indicated by the outputs

ua success and ua failure respectively. Along these lines, we formulate this

specification by Property 3.4, where S stands for the since operator. Formula pSq

is true at time t if q held at some time t′ ≤ t and p held in all times t′′ such that

t′ < t′′ ≤ t.

Property 3.4. G ( hasOpenedChannel →
out !=UA FAILURE S out=UA SUCCESS )

3.6.3 Key Re-exchange Properties

According to the RFC [222, p. 24], re-exchanging keys (or rekeying) (1) is preferably

allowed in all states of the protocol, and (2) its successful execution does not affect ope-

ration of the higher layers. We consider two general protocol states, pre-authenticated

(after a successful authentication request, before authentication) and authenticated.

These may map to multiple states in the learned models. We formalized requirement

(1) by two properties, one for each general state. In the case of the pre-authenticated

state, we know we have reached this state following a successful authentication service

request, indicated by the predicate hasReqAuth. Once here, performing the inputs for

rekey in succession should imply success until one of two things happen, the connection

is lost(connLost) or we have authenticated. This is asserted in Property 3.5. A similar

property is defined for the authenticated state.

Property 3.5. G ( hasReqAuth →
X ( inp=KEXINIT → out=KEXINIT ∧

X ( inp=KEX30 → out=KEX31 NEWKEYS ∧
X ( inp=NEWKEYS → out=NO RESP) ) ) W

( connLost ∨ hasAuth ) )

Requirement (2) cannot be expressed in LTL, since in LTL we cannot specify that

two states are equivalent. We therefore checked this requirement directly, by writing a

simple script which, for each state q that allows rekeying, checks if the state q′ reached

after a successful rekey is equivalent to q in the subautomaton that only contains the

higher layer inputs.

3.6.4 Functional Properties

We formalized and checked several other properties drawn from the RFCs. We found

parts of the specification unclear, which sometimes meant that we had to give our own

interpretation. A first general property can be defined for the disconnect output.

The RFC specifies that after sending this message, a party MUST not send or receive

any data [224, p. 24]. While we cannot tell what the server actually receives, we can

check that the server does not generate any output after sending disconnect. After

a disconnect message, subsequent outputs should be solely derived by the mapper.
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Knowing the mapper induced outputs are no conn, ch max and ch none, we

formulate by Property 3.6 to describe expected outputs after a disconnect.

Property 3.6. G ( out=DISCONNECT →
X G ( out=CH NONE ∨ out=CH MAX ∨ out=NO CONN) )

The RFC states in [222, p. 24] that after sending a kexinit message, a party MUST

not send another kexinit, or a sr accept message, until it has sent a newkeys

message(receivedNewKeys). This is translated to Property 3.7.

Property 3.7. G ( out=KEXINIT →
X ( ( out !=SR ACCEPT ∧ out !=KEXINIT) W receivedNewKeys ) )

The RFC also states [222, p. 24] that if the server rejects the service request, “it

SHOULD send an appropriate SSH MSG DISCONNECT message and MUST discon-

nect”. Moreover, in case it supports the service request, it MUST send a sr accept

message. Unfortunately, it is not evident from the specification if rejection and support

are the only allowed outcomes. We assume that is the case, and formalize an LTL

formula accordingly by Property 3.8. For a service request (sr auth), in case we are

not in the initial state, the response will be either an accept (sr accept), disconnect

(disconnect), or no conn, output generated by the mapper after the connection is

lost. We adjusted the property for the initial state in which models responded with

kexinit which would easily break the property. As explained in Section 3.5, systems

actually generate this kexinit message before any input is sent, whereas models falsely

encode it as a response to initial inputs.

Property 3.8. G ( ( inp=SR AUTH ∧ s t a t e != s0 ) →
( out=SR ACCEPT ∨ out=DISCONNECT ∨ out=NO CONN ) ) )

The RFC for the Authentication layer states in [221, p. 6] that if the server rejects

the authentication request, it MUST respond with a ua failure message. Rejected

requests are suggested by the predicate invAuthReq. In case of requests with valid

credentials (validAuthReq), a ua success MUST be sent only once. While not

explicitly stated, we assume this to be in a context where the authentication service

had been successfully requested, hence we use the hasReqAuth predicate. We define

two properties, Property 3.9 for behavior before an ua success, Property 3.10

for behavior afterward. For the first property, note that (hasReqAuth) may hold

even after successful authentication, but we are only interested in behavior between

the first time (hasReqAuth) holds and the first time authentication is successful

(out=ua success), hence the use of the O operator. As is the case with most higher

layer properties, the first property only has to hold until the end condition holds

(endCondition), that is the connection is lost (connLost) or rekey was started by the

sul (kexStarted).

Property 3.9. G ( ( hasReqAuth ∧ !O out=UA SUCCESS) →
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( inva l i dAuthReq → out=UA FAILURE)

W ( out=UA SUCCESS ∨ endCondi t ion ) )

Property 3.10. G ( out=UA SUCCESS → X G out !=UA SUCCESS)

In the same paragraph, it is stated that authentication requests received after a

ua success SHOULD be ignored. This is a weaker statement, and it requires that all

authentication messages (suggested by authReq) after a ua success output should

prompt no response from the system(no resp) until the end condition is true. The

formulation of this statement shown in Property 3.11.

Property 3.11. G ( out=UA SUCCESS →
X ( ( authReq→ out=NO RESP ) W endCondi t ion ) )

The Connection layer RFC states in [222, p. 9] that on receiving a ch close message,

a party MUST send back a ch close, unless it had already sent this message for the

channel. The channel must have been opened beforehand (hasOpenedChannel) and

the property only has to hold until the end condition holds or the channel was closed

(out=CH CLOSE ). We formulate Property 3.12 accordingly.

Property 3.12. G ( hasOpenedChannel →
( ( inp=CH CLOSE) → ( out=CH CLOSE) )

W ( endCondi t ion ∨ out=CH CLOSE) )

3.6.5 Model Checking Results

Table 3.5 presents model checking results. Crucially, the security properties hold

for all three implementations. We had to slightly adapt our properties for Bitvise

as it buffered all responses during rekey (incl. UA SUCCESS). In particular, we

used validAuthReq instead of out=UA SUCCESS as sign of successful authentica-

tion.

Properties marked with ’*’ did not hold because implementations chose to send unimpl,

instead of the output suggested by the RFC. As an example, after successful authenti-

cation, both Bitvise and OpenSSH respond with unimpl to further authentication

requests, instead of being silent, violating Property 3.11. Whether the alternative

behavior adapted is acceptable is up for debate. Certainly the RFC does not suggest

it, though it does leave room for interpretation.

DropBear is the only implementation that allows rekeying in both general states of the

protocol. DropBear also satisfies all Transport and Authentication layer specifications,

however, problematically, it violates the property of the Connection layer. Upon

receiving ch close, it responds by ch eof instead of ch close, not respecting

Property 3.12.
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Table 3.5: Model checking results

Property Key word OpenSSH Bitvise DropBear

Security Trans. X X X
Auth. X X X

Rekey Pre-auth. X X X
Auth. X X X

Functional Prop. 3.6 MUST X X X
Prop. 3.7 MUST X X X
Prop. 3.8 MUST X* X X
Prop. 3.9 MUST X X X
Prop. 3.10 MUST X X X
Prop. 3.11 SHOULD X* X* X
Prop. 3.12 MUST X X X

3.7 Conclusions

We have combined model learning with abstraction techniques to infer models of the

OpenSSH, Bitvise and DropBear SSH server implementations. We have also formalized

several security and functional properties drawn from the SSH RFC specifications. We

have verified these properties on the learned models using model checking and have

uncovered several minor standard violations. The security-critical properties were met

by all implementations.

Abstraction was provided by a mapper component placed between the learner and the

sul. The mapper was constructed from an existing SSH implementation. The input

alphabet of the mapper explored key exchange, setting up a secure connection, several

authentication methods, and opening and closing channels over which the terminal

service could be requested. We used two input alphabets, a full version for OpenSSH,

and a restricted version for Bitvise and DropBear. The restricted alphabet was still

sufficient to explore most aforementioned behavior.

We encountered several challenges. Firstly, building a mapper presented a considerable

technical challenge, as it required re-structuring of an actual SSH implementation.

Secondly, because we used classical learning algorithms, we had to ensure that the

abstracted implementation behaved like a (deterministic) Mealy machine. Here time-

induced non-determinism was difficult to eliminate. Buffering also presented problems,

leading to a considerable increase in the number of states. Moreover, the systems

analyzed were relatively slow, which meant learning took several days. This was

compounded by the size of the learning alphabet, and it forced us into using a reduced

alphabet for two of the implementations.

Limitations of work in this chapter, hence possibilities for future work, are several.

First of all, the mapper was not formalized, unlike in [88], thus we did not produce a

concretization of the abstract models. Consequently, model checking results cannot

be fully transferred to the actual implementations. Formal definition of the mapper
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and concretization of the learned models (as defined in [10]) would tackle this. The

mapper also caused considerable redundancy in the learned models; tweaking the

abstractions used, in particular those for managing channels, could alleviate this

problem while also improving learning times. This in turn would facilitate learning

using expanded alphabets instead of resorting to restricted alphabets. Furthermore,

the mapper abstraction could be refined, to give more insight into the implementations.

In particular, parameters such as the session identifier could be extracted from the

mapper and potentially handled by existing Register Automata learners [5,54]. These

learners can infer systems with parameterized alphabets, state variables and simple

operations on data. Finally, we suppressed all timing-related behavior, as it could not

be handled by the classical learners used; there is preliminary work on learning timed

automata [98] which could use timing behavior.

Despite these limitations, work in this chapter provides a compelling application of

learning and model checking in a security setting, on a widely used protocol. We

hope this lays some more groundwork for further case studies, as well as advances in

learning techniques.





Chapter 4

Learning Register Automata with Fresh

Value Generation

We present a new algorithm for active learning of register automata. Our

algorithm uses counterexample-guided abstraction refinement to automatically

construct a component which maps (in a history dependent manner) the large

set of actions of an implementation into a small set of actions that can be

handled by a Mealy machine learner.

The class of register automata that is handled by our algorithm extends previous

definitions since it allows for the generation of fresh output values. This feature

is crucial in many real-world systems (e.g. servers that generate identifiers,

passwords or sequence numbers). We have implemented our new algorithm in a

tool called Tomte.

4.1 Introduction

Model checking and model learning are two core techniques in model-driven engineering.

In model checking [68] one explores the state space of a given state transition model,

whereas in model learning [19,108,198,205] the goal is to obtain such a model through

interaction with a system by providing inputs and observing outputs. Both techniques

face a combinatorial blow up of the state-space, commonly known as the state explosion

problem. In order to find new techniques to combat this problem, it makes sense

to follow a cyclic research methodology in which tools are applied to challenging

applications, the experience gained during this work is used to generate new theory

and algorithms, which in turn are used to further improve the tools. After consistent

application of this methodology for 25 years model checking is now applied routinely to

industrial problems [1]. Work on the use of model learning in model-driven engineering

started later [170] and has not yet reached the same maturity level, but in recent years

there has been spectacular progress.
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We have seen, for instance, several convincing applications of model learning in the

area of security and network protocols. Cho et al. [64] successfully used model learning

to infer models of communication protocols used by botnets. Model learning was used

for fingerprinting of EMV banking cards [3]. It also revealed a security vulnerability

in a smartcard reader for internet banking that was previously discovered by manual

analysis, and confirmed the absence of this flaw in an updated version of this device [59].

Fiterau et al. [87] used model learning to demonstrate that both Linux and Windows

implementations violate the TCP protocol standard. Using a similar approach, Fiterau

et al. [89] showed that three implementations of the Secure Shell (SSH) protocol

violate the standard. In [177], model learning is used to infer properties of a network

router, and for testing the security of a web-application (the Mantis bug-tracker).

Model learning has proven to be an extremely effective technique for spotting bugs,

complementary to existing methods for software analysis.

A major theoretical challenge is to lift learning algorithms for finite state systems

to richer classes of models involving data. A breakthrough has been the definition

of a Nerode congruence for a class of register automata [55, 56] and the resulting

generalization of learning algorithms to this class [114,115]. Register automata [55,126]

are a type of extended finite state machines in which one can test for equality of data

parameters, but no operations on data are allowed. Recently, the results on register

automata have been generalized to even larger classes of models in which guards

may contain arithmetic constraints and inequalities [54,58]. A different approach for

extending learning algorithms to classes of models involving data has been proposed

in [10]. Here the idea is to place an intermediate mapper component in between

the implementation and the learner. This mapper abstracts (in a history dependent

manner) the large set of (parametrized) actions of the implementation into a small set

of abstract actions that can now be handled by automata learning algorithms for finite

state systems. In [7], we described an algorithm that uses counterexample-guided

abstraction refinement to automatically construct an appropriate mapper for a subclass

of register automata that may only store the first and the last occurrence of a parameter

value. Moerman et al. [156] present a learning algorithm for nominal automata, which

are acceptors of languages over infinite (structured) alphabets. Nominal automata are a

direct reformulation of the classical notion of finite automaton where one replaces finite

sets with orbit-finite sets and functions (or relations) with equivariant ones [35,172].

The algorithm of Moerman et al. [156] is almost a verbatim copy of the classical

algorithm of Angluin [19]. Deterministic nominal automata are equally expressive as

register automata but, due to the fact that they are unique-valued, exponentially less

succinct (see [56]).

The approaches of [7, 54–56, 58, 114, 115, 156] do not allow to learn models with of

fresh output values. Fresh outputs are technically challenging,1 but crucial in many

1In register automata frameworks with accepting states, like [56], fresh outputs can be modeled

but membership queries cannot be implemented, whereas in transducer based frameworks that

generate outputs in response to inputs, like [7,114], the outcome of membership queries would become

nondeterministic.
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real-world systems, e.g. servers that generate fresh identifiers, passwords or sequence

numbers. Bollig et al. [37] provide a learning algorithm for session automata, a

class of register automata that supports fresh data values. This algorithm is elegant,

but the expressivity of session automata is limited since no guards are allowed in

transitions.

The main contributions of this chapter are (a) an extension of the learning algorithm

of [7] to the full class of register automate with fresh outputs, (b) a description of the

implementation of our new algorithm in the 0.41 release of the Tomte tool2, and (c) an

experimental evaluation of our implementation on a series of benchmarks, including a

comparison with the RALib [54] tool. Tomte’s source code and experimental results

are available at3.

Figure 4.1 presents the overall architecture of our learning approach. At the right we

see the teacher or system under learning (SUL), an implementation whose behavior

can be described by an (unknown) input enabled and input deterministic register

automaton. At the left we see the learner, which is a tool for learning finite deter-

ministic Mealy machines. In our current implementation we use LearnLib [154,178],

but there are also other libraries like libalf [38] that implement active learning algo-

rithms. In between the learner and the SUL we place three auxiliary components:

the determinizer, the lookahead oracle, and the abstractor. First the determinizer

eliminates the nondeterminism of the SUL that is induced by fresh outputs. Then

the lookahead oracle annotates events with information about the data values that

need to be remembered because they play a role in the future behavior of the SUL.

Finally, the abstractor maps the large set of concrete values of the SUL to a small set

of symbolic values that can be handled by the learner.

Learner Abstractor
Lookahead

Oracle
Determinizer

Teacher

(SUL)

Figure 4.1: Architecture of Tomte

The idea to use an abstractor for learning register automata originates from [7] (based

on work of [10]). Using abstractors one can only learn restricted types of deterministic

register automata. Therefore, [2,8] introduced the concept of a lookahead oracle, which

makes it possible to learn any deterministic register automaton. In this chapter, we

extend the algorithm of [2, 8] with the notion of a determinizer, allowing us to also

learn register automata with fresh outputs.

2http://tomte.cs.ru.nl/
3https://gitlab.science.ru.nl/harcok/tomte/tree/release-0.41

http://tomte.cs.ru.nl/
https://gitlab.science.ru.nl/harcok/tomte/tree/release-0.41
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4.2 Register Automata

In this section, we define register automata and their operational semantics in terms

of Mealy machines. In addition, we discuss technical concepts that provide insight

into the behavior of register automata, concepts which play a key role in the technical

development of this chapter: right invariance and symmetry. For reasons of exposition,

the notion of register automaton that we define here is a simplified version of what

we have implemented in our tool: Tomte also supports constants and actions with

multiple parameters. Our definition is similar to that of a scalarset Mealy machine

from [7] and of a register Mealy machine from [114], except that the value of the

output parameter is not necessarily determined by the values of the registers and the

input parameter.

4.2.1 Definition

We postulate a countably infinite set V of variables, which contains two special variables

in and out. An atomic formula is a boolean expression of the form true, false, x = y or

x 6= y, with x, y ∈ V . A formula ϕ is a conjunction of atomic formulas. Let X ⊆ V be

a set of variables. We write Φ(X) for the set of formulas with variables taken from X.

A valuation for X is a function ξ : X → Z. We write Val(X) for the set of valuations

for X. If ϕ is a formula with variables from X and ξ is a valuation for X, then we

write ξ |= ϕ to denote that ξ satisfies ϕ. We use symbol ≡ to denote syntactic equality

of formulas. We represent (partial) functions as sets of pairs, and write X 9 Y for

the set of partial functions from X to Y .

Definition 4.1 (Register automaton). A register automaton (RA) is a tuple R =

〈I,O, L, l0, V,Γ〉 with

• I and O finite, disjoint sets of input and output symbols, respectively,

• L a finite set of locations and l0 ∈ L the initial location,

• V is a function that assigns to each location l a finite set V (l) ⊆ V \ {in, out} of

registers, with V (l0) = ∅.
• Γ ⊆ L×I×Φ(V)× (V 9 V)×O×L a finite set of transitions. For each transition

〈l, i, g, %, o, l′〉 ∈ Γ, we refer to l as the source, i as the input symbol, g as the

guard, % as the update, o as the output symbol, and l′ as the target. We require

that g ∈ Φ(V (l) ∪ {in, out}) and % : V (l′)→ V (l) ∪ {in, out}. We write l
i,g,%,o−−−−→ l′

if 〈l, i, g, %, o, l′〉 ∈ Γ.

Example 4.1. As a first running example of a register automaton we use a FIFO-set

with capacity two, similar to the one presented in [114]. A FIFO-set is a queue in which

only different values can be stored, see Figure 4.2. In this automaton, I = {Push,Pop},
O = {OK,NOK,Return}, L = {l0, l1, l2}, V (l0) = ∅, V (l1) = {v}, and V (l2) = {v, w}.
Input Push tries to add the value of parameter in to the queue, and input Pop tries
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l0start l1 l2

Push(in)/OK
v:=in

Pop/NOK

in 6= v

Push(in)/OK
w:=in

in = v

Push(in)/NOK

out = v

Pop/Return(out)
out = v

Pop/Return(out)
v:=w

Push/NOK

Figure 4.2: FIFO-set with a capacity of 2 modeled as a register automaton

to retrieve a value from the queue. The output in response to a Push is OK if the

input value can be added successfully, or NOK if the input value is already in the

queue or if the queue is full. The output in response to a Pop is Return(out), with as

parameter the oldest value from the queue, or NOK if the queue is empty. Each input

has parameter in and each output has parameter out. However, we omit parameters

that do not matter and for instance write Pop instead of Pop(in) since parameter in

does not occur in the guard and is not touched by the update. Usually, we also do not

list the sets of variables of locations explicitly, as they can be inferred from the context.

4.2.2 Semantics

The operational semantics of register automata is defined in terms of (infinite state)

Mealy machines.

Definition 4.2 (Mealy machine). A Mealy machine is defined to be a tuple M =

〈I,O,Q, q0,→〉, where I and O are disjoint sets of input and output actions, respecti-

vely, Q is a set of states, q0 ∈ Q is the initial state, and → ⊆ Q× I ×O ×Q is the

transition relation. We write q
i/o−−→ q′ if (q, i, o, q′) ∈ →, and q

i/o−−→ if there exists a

state q′ such that q
i/o−−→ q′. A Mealy machine is input enabled if, for each state q and

input i, there exists an output o such that q
i/o−−→. We say that a Mealy machine is

finite if the sets Q, I and O are finite.

A partial run of M is a finite sequence α = q0 i0 o0 q1 i1 o1 q2 · · · in−1 on−1 qn,

beginning and ending with a state, such that for all j < n, qj
ij/oj−−−→ qj+1. A run of

M is a partial run that starts with q0. The trace of α, denoted trace(α), is the finite

sequence β = i0 o0 i1 o1 · · · in−1 on−1 that is obtained by erasing all the states from

α. We say that β is a trace of state q ∈ Q iff β is the trace of some partial run that

starts in q, and we say that β is a trace of M iff β is a trace of q0. We call two states

q, q′ ∈ Q equivalent, notation q ≈ q′, iff they have the same traces. Let M1 and M2

be Mealy machines with the same sets of input actions. We say that M1 and M2

are equivalent, notation M1 ≈ M2, if they have the same traces. We say that M1

implements M2, notation M1 ≤M2, if all traces of M1 are also traces of M2.
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The operational semantics of a register automaton is a Mealy machine in which the

states are pairs of a location l and a valuation ξ of the state variables. A transition

may fire for given input and output values if its guard evaluates to true. In this

case, a new valuation of the state variables is computed using the update part of the

transition.

Definition 4.3 (Semantics register automata). Let R = 〈I,O, L, l0, V,Γ〉 be a RA. The

operational semantics of R, denoted [[R]], is the Mealy machine 〈I×Z, O×Z, Q, q0,→〉,
where Q = {(l, ξ) | l ∈ L ∧ ξ ∈ Val(V (l)))}, q0 = (l0, ∅), and relation → is defined

inductively by the rule

l
i,g,%,o−−−−→ l′

ι = ξ ∪ {(in, d), (out, e)} ι |= g ξ′ = ι ◦ %

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′)

(4.1)

If transition (l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) can be inferred using rule (4.1) then we say that it

is supported by transition l
i,g,%,o−−−−→ l′ of R, and that transition l

i,g,%,o−−−−→ l′ fires.

We call R input enabled if its operational semantics [[R]] is input enabled. A run or

trace of R is just a run or trace of [[R]], respectively. Two register automata R1 and

R2 are equivalent if [[R1]] and [[R2]] are equivalent. We call R input deterministic if

for each reachable state (l, ξ) and input action i(d) at most one transition may fire.

An input deterministic register automaton R has the property that for any trace β of

R there exists a unique run α such that trace(α) = β.

Example 4.2. The register automaton of Figure 4.2 is input deterministic. The

following sequence constitutes a run of this automaton:

(l0, ∅)
Pop/NOK−−−−−−→ (l0, ∅)

Push(22)/OK−−−−−−−−→ (l1, {(v, 22)}) Push(7)/OK−−−−−−−→ (l1, {(v, 22), (w, 7)})

By erasing the states from this sequence we obtain the trace

Pop NOK Push(22) OK Push(7) OK

Note that we again omit the parameters of actions Pop, NOK and OK.

The main contribution of this chapter is an algorithm for learning input enabled

and input deterministic register automata. Our algorithm solves this problem by

reducing it to the problem of learning finite deterministic Mealy machines, for which

efficient algorithms exist. We recall the definition of a deterministic Mealy machine.

We call a register automaton deterministic if its semantics is a deterministic Mealy

machine.

Definition 4.4 (Deterministic Mealy machine). A Mealy machineM = 〈I,O,Q, q0,→
〉 is deterministic if for each state q and input action i there is exactly one output action

o and exactly one state q′ such that q
i/o−−→ q′. A deterministic Mealy machine M can
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equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉, where δ : Q× I → Q and

λ : Q× I → O are defined by: q
i/o−−→ q′ ⇔ δ(q, i) = q′ ∧ λ(q, i) = o. Update function

δ is extended to a function from Q × I∗ → Q by the following classical recurrence

relations:

δ(q, ε) = q,

δ(q, i u) = δ(δ(q, i), u).

Similarly, output function λ is extended to a function from Q× I∗ → O∗ by

λ(q, ε) = ε,

λ(q, i u) = λ(q, i) λ(δ(q, i), u).

Example 4.3. The register automaton of Figure 4.2 is not deterministic. Recall that

in every transition of a register automaton the input symbol carries a parameter in

and the output symbol carries a parameter out, but that we omit these parameters in

diagrams when they do not occur in the guard and are not touched by the update. As

there are no constraints on the value of out for transitions with output symbol OK, an

input Push(1) may induce both an OK(1) and an OK(2) output (in fact, parameter out

can take any value). We can easily make the automaton of Figure 4.2 deterministic,

for instance by strengthening the guards with out = in for transitions where the output

value does not matter.

Example 4.4. Our second running example is a register automaton, displayed in

Figure 4.3, that describes a simple login procedure. If a user performs a Register-input

l0start l1 l2

Register/OK(out)
pwd:=out

in = pwd
Login(in)/OK

in 6= pwd
Login(in)/NOK

Logout/OK

ChangePassword(in)/OK
pwd:=in

Figure 4.3: A simple login procedure modeled as a register automaton

then the automaton produces output symbol OK together with a password. The user

may then proceed by performing a Login-input together with the password that she has

just received. After login the user may either change the password or logout. We

can easily make the automaton input enabled by adding self loops i/NOK in each

location, for each input symbol i that is not enabled. It is not possible to model the

login procedure as a deterministic register automaton: the very essence of the protocol

is that the system nondeterministically picks a password and gives it to the user.
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4.2.3 Symmetry

A key characteristic of register automata is that they exhibit strong symmetries.

Because no operations on data values are allowed and we can only test for equality,

bijective renaming of data values preserves behavior. The symmetries can be formally

expressed through the notion of an automorphism. In the remainder of this section,

we present the definition of an automorphism and explore some basic properties that

will play a key role later on in this chapter. Slight variations of these properties have

been proven elsewhere, see for instance [77]. The symmetry of register automata under

data automorphisms plays a central role in [35], and in fact serves as a definition of

the equivalent notion of a nominal automaton.

Definition 4.5. An automorphism is a bijection h : Z→ Z.

Let X be a set of variables. Then we lift an automorphism h to valuations ξ for X

by pointwise extension, that is, h(ξ) = h ◦ ξ. Since formulas in Φ(X) only assert that

variables from X are equal or not, satisfaction of these formulas is not affected when

we apply an automorphism to a valuation.

Lemma 4.1. Let h be an automorphism, X be a set of variables, ξ ∈ Val(X) and

ϕ ∈ Φ(X). Then ξ |= ϕ iff h(ξ) |= ϕ.

Proof. By structural induction on ϕ.

We also lift automorphisms to the states, actions and transitions of a register au-

tomaton R by pointwise extension. The transition relation of R is preserved by

automorphisms.

Lemma 4.2. Let h be an automorphism and let R be a register automaton. Then

(l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) is a transition of R iff (l, h(ξ))

i(h(d))/o(h(e))−−−−−−−−−→ (l′, h(ξ′)) is a

transition of R.

Proof. Use Lemma 4.1.

Next, we lift automorphisms to runs by pointwise extension.

Lemma 4.3. Let h be an automorphism and let R be a register automaton. Then α

is a (partial) run of R iff h(α) is a (partial) run of R.

Proof. Use Lemma 4.2 and the fact that h trivially preserves the initial state.

Finally, we lift automorphisms to traces by pointwise extension.

Lemma 4.4. Let h be an automorphism, let R be a register automaton and let α be

a partial run of R. Then trace(h(α)) = h(trace(α)).

Proof. Use Lemma 4.3.

Corollary 4.1. Let h be an automorphism and let R be a register automaton. Then

β is a trace of R iff h(β) is a trace of R.
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We call two states, actions, transitions, runs or traces equivalent if there exists an

automorphism that maps one to the other.

4.2.4 Constants and Multiple Parameters

Tomte also supports constants and actions with multiple parameters. These features

are convenient for modelling applications, but do not add any expressivity to the basic

model of register automata.

Suppose R is a register automaton in which we would like to refer to distinct constants

c1 and c2. Then we may extend R with the sequence of two transitions illustrated

in Figure 4.4, starting from location l′0 which is the initial location of the extended

automaton. The first transition initializes c1, which becomes a variable in our encoding,

l′0start l′1 l0

Initialize(in)/OK
c1:=in

in 6= c1
Initialize(in)/OK
c2:=in

Figure 4.4: Encoding of constants

and similarly the second transition initializes c2. After performing the initializations

we enter the initial state l0 of R. Constants c1 and c2 are added as variables to all

the locations of R, and they may be tested in transitions. The encoding introduces

an auxiliary input symbol Initialize and output symbol OK. If desired, the register

automaton can be made input enabled by adding a trivial Initialize-loop to each location

of R, and an Initialize-loops with guard in = c1 to l′1. Note that in an actual run of the

automaton, c1 and c2 may be assigned arbitrary (distinct) values, different from the

specific values for these constants that we had in mind originally. However, because of

the symmetries of register automata this does not matter, and we may always rename

constants to their intended values via an appropriate automorphism.

Tomte also supports multiple parameters for input and output actions, like in the

simple login model shown in Figure 4.5. This model describes a system in which a

user can register by providing a user id and a password, and then login using the

credentials that were used for registering. What we can do here is to split a transition

l0start l1 l2

Register(in1, in2)/OK
usr:=in1

pwd:=in2

in1 = usr
in2 = pwd
Login(in1, in2)/OK

in1 6= usr ∨ in2 6= pwd
Login(in1, in2)/NOK

Register/NOK

Login/NOK

Register/NOK

Figure 4.5: A simple login system with inputs that carry two parameters
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with multiple input parameters into a squence of transitions with a single parameter.

The transition from l0 to l1, for instance, can be translated to the pattern shown in

Figure 4.6.

l0start l′0 l1

Register(in)/OK
usr:=in

Register(in)/OK
pwd:=in

Figure 4.6: Encoding of multiple parameters

The implementation in Tomte involves several optimizations and does not use the

above encodings. Nevertheless, these encodings show how constants and multiple

parameters can be handled conceptually.

4.3 Restricted Types of Register Automata

Cassel et al [54] introduce the concept of a right invariant register automaton and

provide a canonical automaton presentation of any language recognizable by a deter-

ministic right invariant register automaton. The notion of right invariance plays an

important role in our work as well. In this section, we discuss the formal definition of

right invariance and prove some key results.

Definition 4.6. Let R = 〈I,O, L, l0, V,Γ〉 be a register automaton. Then R is right

invariant if, for each transition l
i,g,%,o−−−−→ l′ in Γ, g is satisfiable and

1. for distinct x, y ∈ V (l), neither g ⇒ x = y nor g ⇒ x 6= y is valid, and

2. the combined effect of guard g and assignment % does not imply x = y for distinct

x, y ∈ V (l′) (note that inequalities may be implied).4

Right invariance says that in guards we may compare input and output values with

registers, but we are not allowed to test for (in)equality of distinct registers. Also,

assignments may not copy the value of a single register in the source state to two

distinct registers in the target state.

Example 4.5. The FIFO-set model of Figure 4.2 and the login model of Figure 4.3

are right invariant. Figure 4.7 shows an example of a register automaton that is not

right invariant. This automaton models a simple slot machine. By pressing a button a

user may stop a spinning reel to reveal a value. If two consecutive values are equal

then the user wins, otherwise he loses. The automaton is not right invariant, since in

location l2 we test for equality the registers v and w.

The next lemma provides an equivalent characterization of right invariance.

4We can formalize this second condition by introducing a primed version x′ of each variable x: for

all pairs of distinct variables x, y ∈ V (l′) we require that the implication g ∧ (
∧

z∈V (l′) z
′ = ρ(z))⇒

x′ = y′ is not valid.
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l0start l1 l2

button/reel(out)
v:=out

button/reel(out)
w:=out

v 6= w

button/lose

v = w

button/win

Figure 4.7: A simple slot machine modeled as a register automaton

Lemma 4.5. R is right invariant iff for all transitions l
i,g,%,o−−−−→ l′, % is injective and

guard g is equivalent to a formula of the form gin ∧ gout such that

1. gin ≡ in = x, with x ∈ V (l), or gin ≡
∧
x∈W in 6= x, with W ⊆ V (l) (by convention

the conjunction over the empty index set is true),

2. gout ≡ out = x, with x ∈ V (l) ∪ {in}, or gout ≡
∧
x∈W out 6= x, with W ⊆

V (l) ∪ {in},
3. if gin ≡ in = x, with x ∈ V (l), then there are no y, z ∈ V (l′) with %(y) = in and

%(z) = x,

4. if gout ≡ out = x, with x ∈ V (l) ∪ {in}, then there are no y, z ∈ V (l′) with

%(y) = out and %(z) = x, and

5. there is no x ∈ V (l) with gin ≡ in = x and gout ≡ out = x.

Proof. “⇒” Suppose l
i,g,%,o−−−−→ l′ is a transition of R. Assume that x, y ∈ V (l′) are

distinct variables and %(x) = %(y). Then g ∧ (
∧
z∈V (l′) z

′ = ρ(z))⇒ x′ = y′ is valid,

which is a contradiction. Thus % is injective. Since g is satisfiable, it can be written

as a conjunction of atomic formula x = y or x 6= y with x, y distinct variables from

V (l) ∪ {in, out}. W.l.o.g. we assume that each atomic formula occurs at most once

in g. Observe that g does not contain an atomic formula x = y with x, y distinct

variables from V (l), because then g ⇒ x = y would be valid. Similarly, g does not

contain an atomic formula x 6= y with x, y distinct variables from V (l), because then

g ⇒ x 6= y would be valid. Thus each atomic formula in g either contains variable in

or variable out (or both). W.l.o.g. we assume that if an atomic formulas contain out,

variable out occurs on the left, and otherwise variable in occurs on the left. Moreover,

we assume w.l.o.g. that g does not contain atomic formulas in = x and out = x, for

some x ∈ V (l) (in such a case we may replace out = x by out = in). Let gout be

the conjunction of all atomic formulas from g that contain out, and let gin be the

conjunction of all remaining atomic formulas from g. Then g = gin ∧ gout. Observe

that gin does not contain subformulas in = x and in = y, for distinct x, y ∈ V (l),

because then g ⇒ x = y would be valid. Similarly, gin does not contain subformulas

in = x and in 6= y, for distinct x, y ∈ V (l), because then g ⇒ x 6= y would be valid.

Finally, observe that gin does not contain subformulas in = x and in 6= x, for x ∈ V (l),

because this would contradict satisfiability of g. Condition (1) from the lemma now
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follows. Using a similar argument, we may prove condition (2). Condition (3) follows

by contradiction. Suppose that gin ≡ in = x, %(y) = in and %(z) = x, for y, z ∈ V (l′).

Then g ∧ (
∧
u∈V (l′) u

′ = ρ(u))⇒ y′ = z′ is valid, which is a contradiction. Conditions

(4) follows via a similar argument. Condition (5) follows from our assumption that g

does not contain atomic formulas in = x and out = x, for x ∈ V (l).

“⇐” Suppose l
i,g,%,o−−−−→ l′ is a transition of R. Let ζ : V → Z be an injective function.

Valuation ξ for V (l) ∪ {in, out} assigns distinct values to all variables, except when

equality is required by g:

ξ(z) =


ζ(x) if z ≡ out ∧ gout ≡ out = x

ζ(in) if gin ≡ in = z

ζ(z) otherwise

It is routine to check that ξ |= g, which means that g is satisfiable. Now suppose

that x and y are distinct variables in V (l). Then ξ 6|= g ⇒ x = y, which implies that

g ⇒ x = y is not valid. Let n ∈ Z be a value with n 6= ζ(in) and n 6= ζ(out). Valuation

ξ for V (l) ∪ {in, out} assigns the same value n to all variables, except when inequality

is required by g:

ξ(z) =


ζ(in) if z ≡ in ∧ gin contains an inequality

ζ(out) if z ≡ out ∧ gout contains an inequality

n otherwise

It is again routine to check that ξ |= g. Suppose that x and y are distinct variables in

V (l). Then ξ 6|= g ⇒ x 6= y, which implies that g ⇒ x = y is not valid.

In order to prove condition (2), suppose x, y are distinct variables from V (l′). Let, for

z ∈ V (l′), ξ′(z′) = ξ(%(z)). Then ξ ∪ ξ′ |= g ∧ (
∧
z∈V (l′) z

′ = ρ(z)). By construction ξ

is injective, except that ξ(in) = ξ(z) in case gin ≡ in = z, and ξ(out) = ξ(z) in case

gout ≡ out = z. This observation, in combination with the fact that % is injective and

conditions (3) and (4) from the statement of the lemma, gives us that ξ′ is injective.

Therefore ξ ∪ ξ′ does not satisfy g ∧ (
∧
z∈V (l′) z

′ = ρ(z))⇒ x′ = y′, which implies that

this formula is not valid.

Lemma 4.5 implies that each outgoing transition from a location l of R may fire in

each state (l, ξ) of [[R]], provided we choose the right input and output values. This

has as an important consequence that a location l is reachable in R iff a state (l, ξ) is

reachable in [[R]], for some ξ.

Corollary 4.2. Let R be a right invariant RA with a transition l
i,g,%,o−−−−→ l′. Let

ξ ∈ Val(V (l)). Then [[R]] has a transition (l, ξ)
i(d)/o(e)−−−−−→ (l′, ξ′) that is supported by

l
i,g,%,o−−−−→ l′.

Proof. We may assume that g is of the form gin ∧ gout described in Lemma 4.5. If

gin of the form in = x, for some x ∈ V (l), then choose d = ξ(x). Otherwise, let d be

equal to some arbitrary fresh value outside the range of ξ. Similarly, pick a value for
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e. Then with ι = ξ ∪ {(in, d), (out, e)} we have ι |= g by construction, and thus (l, ξ)

enables a transition that is supported by l
i,g,%,o−−−−→ l′.

Another restriction on register automata that plays an important role in our work is

unique-valuedness. Intuitively, this means that registers are required to always store

unique values.

Definition 4.7. Let R = 〈I,O, L, l0, V,Γ〉 be a register automaton. Then R is unique-

valued if, for each reachable state (l, ξ) of [[R]], valuation ξ is injective, that is, two

registers can never store identical values.

Example 4.6. The FIFO-set model of Figure 4.2 and the login model of Figure 4.3

are both unique-valued. The slot machine model of Figure 4.7 is not unique-valued,

since in location l2 registers v and w may contain the same value. Figure 4.8 presents

a variation of the FIFO-set model that is right invariant but not unique-valued. This

register automaton, which represents a FIFO-buffer of capacity 2, is not unique-valued

since in location l2 registers v and w may contain the same value.

l0start l1 l2

Push(in)/OK
v:=in

Pop/NOK Push(in)/OK
w:=in

out = v

Pop/Return(out)
out = v

Pop/Return(out)
v:=w

Push/NOK

Figure 4.8: FIFO-buffer with a capacity of 2 modeled as a register automaton

Even though right invariance and unique-valuedness are strong restrictions it is possible

to construct, for each register automaton, an equivalent register automaton that is

both right invariant and unique valued. Figure 4.9, for example, shows a right invariant

and unique-valued register automaton that is equivalent to the register automaton of

Figure 4.7.

Theorem 4.1. For each register automaton R there exists a right invariant and

unique-valued register automaton R such that R and R are equivalent.

Proof. See the extended version of this chapter available at 5.

Cassel et al [54] established that right invariant register automata can be exponentially

more succinct than unique-valued register automata. The second main result of this

section is that (arbitrary) register automata in turn can be exponentially more succinct

than right invariant register automata.

Theorem 4.2. There exists a sequence of register automata R1, R2,.. such that the

5http://www.sws.cs.ru.nl/publications/papers/fvaan/TomteFresh/

http://www.sws.cs.ru.nl/publications/papers/fvaan/TomteFresh/
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l0start l1 l2

l3

button/reel(out)
v:=out

out = v

button/reel(out)

out 6= v

button/reel(out)

button/lose

button/win

Figure 4.9: Slot machine modeled as a right invariant register automaton

number of locations of Rn is O(n), but the minimal number of locations of a right

invariant register automaton that is equivalent to Rn is Ω(2n).

Proof. The idea is to let Rn encode a binary counter with n bits. The register

automaton Rn has input symbols Init and Tick, output symbols OK and Overflow,

n+ 2 locations l0, l1, c1, . . . , cn, and n+ 2 registers zero, one, xn, . . . , x1. Figure 4.10

shows the transitions of Rn. We view Tick as the default input symbol, OK as the

default output symbol, and do not display these default symbols in the diagram.

l0start

l1

c1 c2 c3 cn

Init(in)

zero, xn, . . . , x1 := in

in 6= zero

Init(in)

one := in

x1 = one

x1 := zerox1 = zero

x1 := one

x2 = one

x2 := zero

x2 = zero

x2 := one x3 = zero

x3 := one

xn = one

xn := zero

Overflow

xn = zero

xn := one

Figure 4.10: Encoding a binary counter as a register automaton

Mealy machine [[Rn]] has runs in which repeatedly location c1 is visited. The first

time all the variables xn, . . . , x1 equal zero, which encodes a binary counter with value

0, with x1 representing the least significant bit. Then, for each subsequent visit to
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c1, the value of the counter is incremented by one. When the counter overflows all

the bits become zero again and an output Overflow is generated. Since each cycle

from c1 to itself takes at least one transition, it takes at least 2n transitions before an

output Overflow occurs. By Theorem 4.1, we know that there exists a right invariant

register automaton that is equivalent to Rn. Let R′n be such a right invariant register

automaton with a minimal number of locations. Then R′n has a transition with output

symbol Overflow, starting from a location l that is reachable with a cycle free path of

transitions in R′n. Due to Corollary 4.2, the number of transitions in this path is at

least 2n (otherwise [[R′n]] would be able to produce an Overflow prematurely). Hence

R′n contains at least 2n locations.

In this chapter, we will present an algorithm for learning input enabled, input de-

terministic, register automata. The models produced by our learning algorithm will

be a right invariant register automaton. By the results of this section, such a right

invariant register automaton will always exist, although it may be exponentially less

succinct than the original register automaton of the teacher.

4.4 Model Learning

Algorithms for active learning of automata have originally been developed for inferring

finite state acceptors for unknown regular languages [19]. Since then these algorithms

have become popular with the testing and verification communities for inferring models

of black box systems in an automated fashion. While the details change for concrete

classes of systems, all of these algorithms follow basically the same pattern. They

model the learning process as a game between a learner and a teacher. The learner

has to infer an unknown automaton with the help of the teacher. The learner can ask

three types of queries to the teacher:

Output Queries ask for the expected output for a concrete sequence of inputs. In

practice, output queries can be realized as simple tests.

Reset Queries prompt the teacher to return to its initial state and are typically

asked after each output query.

Equivalence Queries check whether a conjectured automaton produced by the

learner is correct. In case the automaton is not correct, the teacher provides a

counterexample, a trace exposing a difference between the conjecture and the

expected behavior of the system to be learned. Equivalence queries can be

approximated through (model-based) testing in black-box scenarios.

A learning algorithm will use these three kinds of queries and produce a sequence of

automata converging towards the correct one in a finite number of steps. We refer the

reader to [121,198,205] for introductions to active automata learning.
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4.4.1 The Nerode Congruence

Most of the learning algorithms that have been proposed in the literature aim to

construct an approximation of the Nerode congruence based on a finite number of

queries. The famous Myhill-Nerode theorem [163] for Deterministic Finite Automata

(DFA) provides a basis for describing (a) how prefixes traverse states (equivalence

classes), and (b) how states can be distinguished (by suffixes). Below we present a

straightforward reformulation of the Myhill-Nerode theorem for deterministic Mealy

machines, adapted from [198].

Definition 4.8. An observation over a set of inputs I and a set of outputs O is a

finite alternating sequence i0o0 · · · in−1on−1 of inputs and outputs that is either empty,

or begins with an input and ends with an output. Let S be a set of observations over I

and O. Then S is

• prefix closed if β i o ∈ S =⇒ β ∈ S,

• behavior deterministic if β i o ∈ S ∧ β i o′ ∈ S =⇒ o = o′, and

• input complete if β ∈ S ∧ i ∈ I =⇒ ∃o ∈ O : β i o ∈ S.

Two observations β, β′ ∈ S are equivalent for S, notation β ≡S β′, iff for all obser-

vations γ over I and O, βγ ∈ S ⇔ β′γ ∈ S. We write [β] to denote the equivalence

class of β with respect to ≡S.

Theorem 4.3 (Myhill-Nerode). Let S be a set of observations over finite sets of

inputs I and outputs O. Then S is the set of traces of some finite, deterministic Mealy

machine M iff S is nonempty, prefix closed, behavior deterministic, input complete,

and ≡S has finitely many equivalence classes (finite index).

Proof. “⇒”. Let M be a finite, deterministic Mealy machine and let S be its set

of traces. Then it is immediate from the definitions that S is a nonempty set of

observations that is prefix closed and input complete. Since each trace of M leads

to a unique state and M is deterministic, it follows that S is behavior deterministic.

Since all observations that lead to the same state are obviously equivalent and since

M is finite, equivalence relation ≡S has finite index.

“⇐”. Suppose S is nonempty, prefix closed, behavior deterministic, input complete,

and ≡S has finite index. We define the finite, deterministic Mealy machine M =

〈I,O,Q, q0, δ, λ〉 as follows:

• Q is the set of classes of ≡S .

• q0 is given by [ε].

• Let β ∈ S and i ∈ I. Then, since S is both input complete and behavior

deterministic, there exists a unique o ∈ O such that β i o ∈ S. We define

δ([β], i) = [β i o] and λ([β], i) = o.

It is straightforward to verify that M is a well-defined finite, deterministic Mealy

machine whose set of traces equals S.



4.4. Model Learning 93

The equivalence relation ≡S induced by the set of traces S of a register automaton

does not have a finite index. However, as observed by [35,54,55], by using the inherent

symmetry of register automata we may define a slightly different equivalence relation

≡aut
S that does have a finite index and that may serve as a basis for a Myhill-Nerode

theorem for register automata. The equivalence relation ≡aut
S on S is defined by

β ≡aut
S β′ ⇔ ∃ automorphism h ∀γ : (βγ ∈ S ⇔ β′h(γ) ∈ S)

Proposition 4.1. Let R be an input deterministic register automataton and let S be

its set of traces. Then ≡aut
S has a finite index.

Proof. Since R is input deterministic, there exists for each trace of R a unique

corresponding run. Let β and β′ be traces of R and let (l, ξ) and (l′, ξ′) be the final

states of the corresponding runs. Assume that l = l′ and Part(ξ) = Part(ξ′). (Here

we write Part(f) for the partition induced by function f in which two elements from

the domain of f are placed in the same block iff f maps them to the same value.)

Then there exists an automorphism h from ξ to ξ′. By Lemma 4.3, α is a partial run

starting in (l, ξ) iff h(α) is a partial run starting in (l′, ξ′). Moreover, by Lemma 4.4,

trace(h(α)) = h(trace(α)). Hence, β ≡aut
S β′. Since R has a finite number of locations,

since each location has a finite set of registers, and since there are only finitely many

partitions of a finite set, this implies that ≡aut
S has a finite index.

Whereas [114,115] presents a learning algorithm for register automata that is based on a

variant of the Myhill-Nerode theorem for ≡aut
S (i.e., the “converse” of Proposition 4.1),

the idea of our approach is to learn register automata by constructing an abstraction

of the set of traces that has a finite index according to the original definition of

≡S .

4.4.2 Mappers

Below we recall relevant parts of the theory of mappers from [10]. In order to learn

an over-approximation of a “large” Mealy machine M, we may place a transducer

in between the teacher and the learner, which translates concrete inputs to abstract

inputs, concrete outputs to abstract outputs, and vice versa. This allows us to reduce

the task of the learner to inferring a “small” Mealy machine with an abstract alphabet.

As we will see, the determinizer and the abstractor of Figure 4.1 are examples of such

transducers.

The behavior of a transducer is fully specified by a mapper, a deterministic Mealy

machine in which concrete actions are inputs and abstract actions are outputs.

Definition 4.9 (Mapper). A mapper is a deterministic Mealy machine A = 〈I ∪
O,X ∪ Y,R, r0, δ, λ〉, where

• I and O are disjoint sets of concrete input and output actions,

• X and Y are disjoint sets of abstract input and output actions, and
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• λ : R× (I ∪O)→ (X ∪ Y ), referred to as the abstraction function, respects inputs

and outputs, that is, for all a ∈ I ∪O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

A mapper A translates any sequence β ∈ (I ∪O)∗ of concrete actions into a correspon-

ding sequence of abstract actions given by

αA(β) = λ(r0, β).

A mapper also allows us to abstract a Mealy machine with concrete actions in I and O

into a Mealy machine with abstract actions in X and Y . Basically, the abstraction of

Mealy machineM via mapper A is the Cartesian product of the underlying transition

systems, in which the abstraction function is used to convert concrete actions into

abstract ones.

Definition 4.10 (Abstraction). Let M = 〈I,O,Q, q0,→〉 be a Mealy machine and

let A = 〈I ∪O,X ∪ Y,R, r0, δ, λ〉 be a mapper. Then αA(M), the abstraction of M
via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q×R, (q0, r0),→〉, where ⊥6∈ Y is a fresh

output action and → is given inductively by the rules

q
i/o−−→ q′, r

i/x−−→ r′
o/y−−→ r′′

(q, r)
x/y−−→ (q′, r′′)

6 ∃i ∈ I : r
i/x−−→

(q, r)
x/⊥−−−→ (q, r)

The first rule says that a state (q, r) of the abstraction has an outgoing x-transition for

each transition q
i/o−−→ q′ of M with λ(r, i) = x. In this case, there exist unique r′, r′′

and y such that r
i/x−−→ r′ and r′

o/y−−→ r′′. An x-transition in state (q, r) then leads to

state (q′, r′′) and produces output y. The second rule in the definition ensures that the

abstraction αA(M) is input enabled. Given a state (q, r) of the mapper, it may occur

that for some abstract input x there does not exist a corresponding concrete input

i with λ(r, i) = x. In this case, an input x triggers the special “undefined” output

action ⊥ and leaves the state unchanged.

Lemma 4.6. Let A be a mapper and let M be a Mealy machine with the same

concrete input and output actions I and O. If β is a trace of M then αA(β) is a trace

of αA(M).

Proof. Straightforward, see also Lemma 4 of [10].

A mapper describes the behavior of a transducer component that we can place in

between a Learner and a Teacher. Consider a mapper A = 〈I ∪O,X ∪ Y,R, r0, δ, λ〉.
The transducer component that is induced by A records the current state, which

initially is set to r0, and behaves as follows:

• Whenever the transducer is in a state r and receives an abstract input x ∈ X
from the learner, it nondeterministically picks a concrete input i ∈ I such that

λ(r, i) = x, forwards i to the teacher, and jumps to state δ(r, i). If there exists no

such input i, then the component returns output ⊥ to the learner.
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• Whenever the transducer is in a state r and receives a concrete answer o from the

teacher, it forwards λ(r, o) to the learner and jumps to state δ(r, o).

• Whenever the transducer receives a reset query from the learner, it changes its

current state to r0, and forwards a reset query to the teacher.

From the perspective of a learner, a teacher for M and a transducer for A together

behave exactly like a teacher for αA(M). (We refer to [10] for a formalization of

this claim.) In [10], also a concretization operator γA is defined. Let H be a Mealy

machine with “abstract” actions in X and Y . The concretization operator γA is the

adjoint of the abstraction operator: it turns H into a concrete Mealy machine γA(H)

with actions in I and O. As shown in [10], αA(M) ≤ H implies M≤ γA(H).

4.5 The Determinizer

The login example of Figure 4.3 shows that input deterministic register automata may

exhibit nondeterministic behavior: in each run the automaton may generate different

output values (passwords). This is a useful feature since it allows us to model the

actual behavior of real-world systems, but it is also problematic since learning tools

such as LearnLib can only handle deterministic systems. In this section, we show

how this type of nondeterminism can be eliminated by exploiting symmetries that are

present in register automata.

As a first step, we show that each trace is equivalent to a ‘neat’ trace in which fresh

values are selected according to some fixed rules. The concept of ‘neat’ traces is similar

to the encoding with ‘representative’ traces that was used in [55] in a setting without

fresh values.

Definition 4.11 (Fresh and neat). Consider a trace β of register automaton R:

β = i0(d0) o0(e0) i1(d1) o1(e1) · · · in−1(dn−1) on−1(en−1) (4.2)

Let Sj be the set of values that occur in β before input ij , and let Tj be the set of values

that occur before output oj, that is, S0 = ∅, Tj = Sj ∪ {dj} and Sj+1 = Tj ∪ {ej}.
An input value dj is fresh if it has not occurred before in the trace, that is, dj 6∈ Sj.
Similarly, an output value ej is fresh if it has not occurred before, that is, ej 6∈ Tj . We

say that β has neat inputs if each fresh input value dj is equal to the largest preceding

value (including 0) plus one, that is, dj ∈ Sj ∪ {max(Sj ∪ {0}) + 1}. Similarly, β

has neat outputs if each fresh output value is equal to the smallest preceding value

(including 0) minus one, that is, for all j, ej ∈ Tj ∪ {min(Tj ∪ {0})− 1}. A trace is

neat if it has neat inputs and neat outputs, and a run is neat if its trace is neat.

Observe that in a neat trace the n-th fresh input value is n, and the n-th fresh output

value is −n.

Example 4.7. Trace i(1) o(3) i(7) o(7) i(3) o(2) is not neat, for instance because the

first fresh output value 3 is not equal to −1. Also, the second input value 7 is fresh
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but different from 4, the largest preceding value plus 1. An example of a neat trace is

i(1) o(−1) i(2) o(2) i(−1) o(−2).

The next proposition implies that in order to learn the behavior of a register automaton

it suffices to study its neat traces, since any other trace is equivalent to a neat trace.

In order to prove this result, we need the following technical definition, which extends

any finite one-to-one relation to an automorphism.

Definition 4.12. For each finite set S ⊆ Z, let EnumCompl(S) be a function that

enumerates the elements in the complement of S, that is, EnumCompl(S) : N→ (Z \S)

is a bijection. Then, for any finite one-to-one relation r ⊆ Z×Z, r̂ is the automorphism

given by:

r̂ = r ∪ {(EnumCompl(dom(r))(k),EnumCompl(ran(r))(k)) | k ∈ N}.

Here dom(r) denotes the domain of r and ran(r) denotes the range of r.

Proposition 4.2. For every trace β there exists a zero respecting automorphism h

such that h(β) is neat.

Proof. Let β, Sj and Tj (j = 0, . . . , n − 1) be as in Definition 4.11. Inductively, we

define relations sj , tj ⊆ Z× Z (for j = 0, . . . , n− 1) as follows

s0 = ∅

tj =

{
sj ∪ {(dj ,max(ran(sj) ∪ {0}) + 1)} if dj is fresh

sj otherwise

sj+1 =

{
tj ∪ {(ej ,min(ran(tj) ∪ {0})− 1)} if ej is fresh

tj otherwise

By induction, we can prove the following assertions, for all j: (1) dom(sj) = Sj and

dom(tj) = Tj , (2) sj and tj are injective. By construction, tn−1(β) is neat. Then

h = t̂n−1 is an automorphism such that h(β) is neat.

Example 4.8. Consider the trace i(1) o(3) i(7) o(7) i(3) o(2) from Example 4.7.

This non neat trace can be mapped to the neat trace i(1) o(−1) i(2) o(2) i(−1) o(−2)

by the automorphism h that acts as the identity function except that it permutes some

values: h(3) = −1, h(−1) = 7, h(7) = 2, h(2) = −2, and h(−2) = 3.

Corollary 4.3. For every run α of R there exists an automorphism h such that h(α)

is neat.

Proof. Let α be a run of R. Then β = trace(α) is a trace of R. Therefore, by

Proposition 4.2, there exists an automorphism h such that h(β) is neat. By Lemma 4.3,

h(α) is a run of R and by Lemma 4.4, trace(h(α)) = h(β). Since h(β) is neat and a

run is neat if its trace is neat, h(α) is neat as well.

Whereas the learner may choose to only provide neat inputs, we usually have no

control over the outputs generated by the SUL, so in general these will not be neat.
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In order to handle this, we place a component, called the determinizer, in between the

SUL and the learner. The determinizer renames the outputs generated by the SUL

and makes them neat. The behavior of the determinizer is specified by the mapper D
defined below. As part of its state D maintains a finite one-to-one relation r describing

the current renamings, which grows dynamically during an execution (similar to the

functions sj and tj in the proof of Proposition 4.2). We write r̂ for an automorphism

that extends r (we may construct r̂ using the construction described in the proof of

Proposition 4.2). Whenever the SUL generates an output n that does not occur in

dom(r), this output is mapped to a value m one less than the minimal value in ran(R),

and the pair (n,m) is added to r. Whenever the learner generates an input m, the

mapper concretizes this value to n = r̂−1(m) and forwards n to the SUL. If n does

not occur in dom(r), then r is extended with the pair (n,m).

Definition 4.13 (Determinizer). Let I and O be finite, disjoint sets of input and

output symbols. The determinizer for I and O is the mapper D = 〈(I × Z) ∪ (O ×
Z), (I × Z) ∪ (O × Z), R, r0, δ, λ〉 where

• R = {r ⊆ Z× Z | r finite and one-to-one},
• r0 = ∅,
• for all r ∈ R, i ∈ I, o ∈ O and n ∈ Z,

λ(r, i(n)) = i(r̂(n))

λ(r, o(n)) =

{
o(r(n)) if n ∈ dom(r)

o(min(ran(r) ∪ {0})− 1) otherwise

δ(r, i(n)) =

{
r if n ∈ dom(r)

r ∪ {(n, r̂(n))} otherwise

δ(r, o(n)) =

{
r if n ∈ dom(r)

r ∪ {(n,min(ran(r) ∪ {0})− 1)} otherwise

Proposition 4.3. Let R be a register automaton with inputs I and outputs O, let D
be the determinizer for I and O, and let β be a trace of αD([[R]]). Then β has neat

outputs and is equivalent to a trace of R.

Proof. Let α be a run of αD([[R]]) with trace β. We claim that α does not contain

any transitions with output ⊥, that is, transitions generated by the second rule in

Definition 4.9. This is because, for any state r of mapper D and any ‘abstract’ input

i(d), there exists a ‘concrete’ input i(d′) such that λ(r, i(d′)) = i(d). In fact, since r̂ is

an automorphism, we can just take d′ = r̂−1(d). Hence run α takes the form

α = ((l0, ξ0), r0) i0(d0) o0(e0) ((l1, ξ1), r1) i1(d1) o1(e1) ((l2, ξ2), r2) · · ·

· · · in−1(dn−1) on−1(en−1) ((ln, ξn), rn).

Since the transitions in run α have been derived by repeated application of the first

rule in Definition 4.9, there exist d′j , e
′
j and r′j such that [[R]] has a run α′ of the form

α′ = (l0, ξ0) i0(d′0) o0(e′0) (l1, ξ1) i1(d′1) o1(e′1) (l2, ξ2) · · ·
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· · · in−1(d′n−1) on−1(e′n−1) (ln, ξn),

and D has a run

r0 i0(d′0) i0(d0) r′0 o0(e′0) o0(e0) r1 i1(d′1) i1(d1) r′1 o1(e′1) o1(e1) r2 · · ·

· · · in−1(d′n−1) in−1(dn−1) r′n−1 on−1(e′n−1) on−1(en−1) rn.

From Definition 4.13 we may infer that, for all j < n, (d′j , dj) ∈ r′j , (e′j , ej) ∈ rj+1,

rj ⊆ r′j and r′j ⊆ rj+1. Now let h = r̂n. Then h is an automorphism satisfying, for all

j < n, h(d′j) = dj and h(e′j) = ej . Let β′ be the trace of α′. Then h(β′) = β and thus

traces β and β′ are equivalent.

Let Sj be the set of values that occur in β before input ij , and let Tj be the set of

values that occur in β before output oj . Then it follows by induction that Sj = ran(rj)

and Tj = ran(r′j). According to Definition 4.11, β has neat outputs if ej ∈ Tj ∪
{min(Tj ∪ {0}) − 1}, that is, if ej ∈ ran(r′j) ∪ {min(ran(r′j ∪ {0})) − 1}. But this is

implied by Definition 4.13.

Proposition 4.4. Any trace of R with neat outputs is also a trace of αD([[R]]).

Proof. Let α be a run of [[R]] with trace β. Then run α takes the form

α = (l0, ξ0) i0(d0) o0(e0) (l1, ξ1) i1(d1) o1(e1) (l2, ξ2) · · ·

· · · in−1(dn−1) on−1(en−1) (ln, ξn).

αD([[R]]) has a corresponding run α′ of the form

α′ = ((l0, ξ0), r0) i0(d′0) o0(e′0) ((l1, ξ1), r1) i1(d′1) o1(e′1) ((l2, ξ2), r2) · · ·

· · · in−1(d′n−1) on−1(e′n−1) ((ln, ξn), rn)

and D has a run

r0 i0(d0) i0(d′0) r′0 o0(e0) o0(e′0) r1 i1(d1) i1(d′1) r′1 o1(e1) o1(e′1) r2 · · ·

· · · in−1(dn−1) in−1(d′n−1) r′n−1 on−1(en−1) on−1(e′n−1) rn.

Let Sj be the set of values that occur in β before input ij , and let Tj be the set of

values that occur in β before output oj . Then it follows by induction that Sj = dom(rj)

and Tj = dom(r′j). Since β has neat outputs, ej ∈ dom(r′j)∪{min(dom(r′j)∪{0})− 1}.
Let Id denote the identity function on Z, that is, Id = {(n, n) | n ∈ Z}. Observe that

for any finite one-to-one relation r ⊆ Id , r̂ = Id . By induction on j, we may now

prove that rj , r
′
j ⊆ Id . It follows that dj = d′j and ej = e′j , for all j. Thus β is a trace

of αD([[R]]), as required.

Corollary 4.4. R and αD([[R]]) have equivalent traces.

Proof. Immediate from Propositions 4.2, 4.3 and 4.4.
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Example 4.9. The determinizer does not remove all sources of nondeterminism. The

login model of Figure 4.3, for instance, is not behavior deterministic, even when we only

consider neat traces, because of neat traces Register(1) OK(1) and Register(1) OK(−1).

This nondeterminism may be considered ‘harmless’ since the parameter value of the

OK-output is not stored and the behavior after the different outputs is the same. The

slot machine model of Figure 4.7, however, has real nondeterminism in the sense that

traces button(1) reel(−1) button(1) reel(−2) and button(1) reel(−1) button(1) reel(−1)

lead to states with distinct output symbols in the outgoing transitions.

The slot machine of Example 4.9 nondeterministically selects an output which ‘acci-

dentally’ may be equal to a previous value. We call this a collision.

Definition 4.14. Let β be a trace of register automaton R. Then β ends with a

collision if (a) the last output value is not fresh, and (b) the sequence obtained by

replacing this value by some other value is also a trace of R. We say that β has a

collision if it has a prefix that ends with a collision.

Example 4.10. Trace button(3) reel(137) button(8) reel(137) of the slot machine

model of Figure 4.7 has a collision, because the last output value 137 is not fresh, and

if we replace it by 138 the result is again a trace.

In many protocols, fresh output values are selected from a finite but large domain.

TCP sequence and acknowledgement numbers, for instance, comprise 32 bits. The

traces generated during learning are usually not so long and typically contain only a few

fresh outputs. As a result, chances that collisions occur during learning are typically

negligible. For these reasons, we have decided to consider only observations without

collisions. Under the assumption that the SUL will not repeatedly pick the same fresh

value, we can detect whether an observation contains a collision by simply repeating

experiments a few times: if, after the renaming performed by the determinizer, we

still observe nondeterminism then a collision has occurred. By ignoring traces with

collisions, it may occur that the models that we learn incorrectly describe the behavior

of the SUL in the case of collisions. We will, for instance, miss the win-transition in

the slot machine of Figure 4.7. But if collisions are rare then it is extremely difficult to

learn those types of behavior anyway. In applications with many collisions (for instance

when fresh outputs are selected randomly from a small domain) one should not use

the approach in this chapter, but rather an algorithm for learning nondeterministic

automata such as the one presented in [211].

Our approach for learning register automata with fresh outputs relies on the following

proposition.

Proposition 4.5. The set S of collision free neat traces of an input deterministic

register automaton R is behavior deterministic.

Proof. Let R = 〈I,O, L, l0, V,Γ〉 be an input deterministic register automaton and let

S be the set of collision free neat traces of R. Suppose that β i(d) o(e) and β i(d) o′(e′)
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are traces in S. Our task is to prove that o(e) = o′(e′). Since R is input deterministic,

there is a unique run α of [[R]] with trace β. Let (l, ξ) be the last state of this run. Since

β i(d) o(e) and β i(d) o′(e′) are traces of R, [[R]] has transitions (l, ξ)
i(d)/o(e)−−−−−→ (l1, ξ1)

and (l, ξ)
i(d)/o′(e′)−−−−−−→ (l′1, ξ

′
1). Since R is input deterministic, there is a unique transition

that supports both transitions of [[R]] and thus o = o′. We consider two cases. If both

values e and e′ are fresh then, since traces β i(d) o(e) and β i(d) o′(e′) are neat, e and

e′ are both equal to the smallest preceding value minus one and thus e = e′. Now

assume that at least one value, say e, is not fresh. Then, since β i(d) o(e) is collision

free, no sequence obtained from β i(d) o(e) by replacing e by some other value can be

a trace of R. Thus e = e′ also in this case. We conclude o(e) = o′(e′), as required.

Our learning approach works for those register automata in which, when a fresh

output is generated, it does not matter for the future behavior whether or not this

fresh output equals some value that occurred previously. This is typically the case

for real-world systems such as servers that generate fresh identifiers, passwords or

sequence numbers. The slot machine of Figure 4.7 and Figure 4.9 is an example of a

system that we cannot learn.

Proposition 4.6. Let R1 and R2 be two input deterministic right invariant register

automata in which out does not occur negatively in guards. Then R1 and R2 are

equivalent iff they have the same sets of collision free traces.

4.6 The Lookahead Oracle

The main task of the lookahead oracle is to compute for each trace of the SUL a set

of values that are memorable after occurrence of this trace. Intuitively, a value d is

memorable if it has an impact on the future behavior of the SUL: either d occurs in a

future output, or a future output depends on the equality of d and a future input. The

notion of a memorable value is fundamental for register automata and was previously

studied e.g. in [31].

Definition 4.15. Let R be a register automaton, let β be a trace of R, and let d ∈ Z
be a parameter value that occurs in β. Then d is memorable after β iff there exists a

witness for d, that is, a sequence β′ such that β β′ is a trace of R and if we replace

each occurrence of d in β′ by a fresh value f then the resulting sequence β (β′[f/d]) is

not a trace of R anymore.

Example 4.11. In the example of Figure 4.2, the set of memorable values after trace

β = Push(1) OK Push(2) OK Push(3) NOK is {1, 2}. Values 1 and 2 are memorable,

because of the witness β′ = Pop Return(1) Pop Return(2). Sequence β β′ is a trace

of the model, but if we rename either the 1 or the 2 in β′ into a fresh value, then

this is no longer the case. In the example of Figure 4.3, value 2207 is memorable

after Register OK(2207) because Register OK(2207) Login(2207) OK is a trace of the
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automaton, but Register OK(2207) Login(1) OK is not.

The next theorem gives a state based characterization of memorable values: a value d

is memorable after a run of a deterministic register automaton iff the final state of

that run is inequivalent to the state obtained by replacing all occurrences of f by a

fresh value. Thus we can also say that a value d is memorable in a state of a register

automaton.

Theorem 4.4. Let R be a deterministic register automaton, let α be a run of M
with trace(α) = β, let (l, ξ) be the last state of α, let d ∈ Z, and let f 6= d be a fresh

value that does not occur in α. Let swapd,f be the automorphism that maps d to f ,

f to d, and acts as identity for all other values. Then d is memorable after β iff

(l, ξ) 6≈ (l, swapd,f (ξ)).

Proof. Suppose d is memorable after β. Then there exists a witness for d, that is,

a sequence β′ such that β β′ is a trace of R and β swapd,f (β′) is not a trace of R.

Since R is deterministic, α is the unique run of M with trace(α) = β. Therefore,

since β β′ is a trace of R, there exists a partial run α′ that starts in (l, ξ) such

that trace(α′) = β′. Moreover, since β swapd,f (β′) is not a trace of R, swapd,f (β′) is

not a trace of (l, ξ). By Lemma 4.3, swapd,f (α′) is a partial run of R that starts in

(l, swapd,f (ξ)). By Lemma 4.4, trace(swapd,f (α′)) = swapd,f (β′). Thus swapd,f (β′) is

a trace of (l, swapd,f (ξ)), which in turn implies (l, ξ) 6≈ (l, swapd,f (ξ)).

For the other direction, suppose (l, ξ) 6≈ (l, swapd,f (ξ)). Then there exists a sequence

β′ that is a trace of (l, ξ) but not of (l, swapd,f (ξ)). We claim that β′ is a witness for

d. Clearly, β β′ is a trace of R. Now suppose β swapd,f (β′) is a trace of R. Then,

since R is deterministic, swapd,f (β′) is a trace of (l, ξ). By Lemmas 4.3 and 4.4,

swapd,f (swapd,f (β′)) is a trace of (l, swapd,f (ξ)). Therefore, since swapd,f is its own

inverse, β′ is a trace of (l, swapd,f (ξ)), and we have derived a contradiction. Thus our

assumption was wrong and β swapd,f (β′) is not a trace of R.

The above theorem reduces the problem of deciding whether a value is memorable

to the problem of deciding equivalence of two states in a register automaton. It is

not hard to see that conversely the problem of deciding equivalence of states can be

reduced to the problem of deciding whether a value is memorable. The problem of

finding a witness for a memorable value is thus equivalent to the problem of finding a

distinguishing trace between two states.

Consider the architecture of Figure 4.1. Whenever the Lookahead Oracle receives an

input from the Abstractor, this is just forwarded to the Determinizer. However, when

the Lookahead Oracle receives a concrete output o from the Determinizer, then it

forwards o to the Abstractor, together with a list of the memorable values after the

occurrence of o. The ordering of the memorable values in the list determines in which

registers the values will be stored by the Abstractor. Different orderings are possible,

and the choice of the ordering affects the size of the register automaton that we will

learn (similar to the way in which the variable ordering affects the size of a Binary

Decision Diagram [50]). Within the Tomte tool we have experimented with different
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orderings. A simple way to order the values, for instance, is to sort them in ascending

order. An ordering that works rather well in practice, and on which we elaborate

below, is the order in which the values occur in the run.

Let R be the input deterministic register automaton that we want to learn, and let β

be a trace of R. Then, since R is input deterministic, it has a unique run

α = (l0, ξ0) i0(d0) o0(e0) (l1, ξ1) i1(d1) o1(e1) (l2, ξ2) · · ·

· · · in−1(dn−1) on−1(en−1) (ln, ξn).

such that trace(α) = β. For j ≤ n, we define rj ∈ Z∗ inductively as follows: r0 = ε

and, for j > 0, rj is obtained from rj−1 by first appending dj−1 and/or ej−1 in case

these values do not occur in the sequence yet, and then erasing all values that are not

memorable in state (lj , ξj). Then the task of the Lookahead Oracle is to annotate each

output action of β with the list of memorable values of the state reached by doing

this output:

OracleR(β) = i0(d0) o0(e0r1) i1(d1) o1(e1r2) · · · in−1(dn−1) on−1(en−1rn).

In order to accomplish its task, the Lookahead Oracle stores all the traces of the SUL

observed during learning in an observation tree.

Definition 4.16. An observation tree is a pair (N ,MemV ), where N is a finite,

nonempty, prefix-closed set of collision free, neat traces, and function MemV : N → Z∗

associates to each trace a finite sequence of distinct values which are memorable after

running this trace.

In practice, observation trees are also useful as a cache for repeated queries on the

SUL. Figure 4.11 shows two observation trees for our FIFO-set example. For each

trace βj a list of memorable values is given.

β0

〈〉

β1

〈〉

β3

〈〉

Push(2)/OK

β4

〈〉

Pop/Return(1)

Push(1)/OK

β2

〈〉

.

.

.

Pop/NOK

β0

〈〉

β1

〈1〉

β3

〈〉

Push(2)/OK

β4

〈〉

Pop/Return(1)

Push(1)/OK

β2

〈〉

.

.

.

Pop/NOK

Figure 4.11: Observation trees for FIFO-set without and with Pop lookahead trace

Whenever a new trace β is added to the tree, the oracle computes a list of memorable

values for it. For this purpose, the oracle maintains a list L = 〈σ1, . . . , σk〉 of lookahead
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traces. These lookahead traces are run in sequence after β to explore the future of β

and to discover its memorable values.

Definition 4.17. A lookahead trace is a sequence of symbolic input actions of the

form i(v) with i ∈ I and v ∈ {p1, p2, . . .} ∪ {n1, n2, . . .} ∪ {f1, f2, . . .}.

Intuitively, a lookahead trace is a symbolic trace, where each parameter refers to either

a previous value (pj), or to a fresh input value (nj), or to a fresh output value (fj).

Within lookahead traces, parameter p1 plays a special role as the parameter that is

replaced by a fresh value. Let σ be a lookahead trace in which parameters P refer

to previous values, and let ζ be a valuation for P . Then σ can be converted into a

concrete trace on the fly, by replacing each variable pj ∈ P by ζ(pj), picking a fresh

value for each variable nj whenever needed, and assigning to fj the j-th fresh output

value. If trace γ is a possible outcome of converting lookahead trace σ, starting from

a state (l, ξ) with valuation ζ, then we say that γ is a concretization of σ.

The following lemma implies that a finite number of lookahead traces will suffice to

discover all memorable values of all states in an observation tree. The idea is that if a

concretization of a lookahead trace is a witness that a value is memorable in some

state, the same lookahead trace can also be used to discover that a corresponding

value is memorable in any symmetric state.

Lemma 4.7. Let R be a register automaton and let (l, ξ) be a state of [[R]]. Let σ be

a lookahead trace in which parameters P = {p1, . . . , pl} refer to previous values, and

let ζ be a valuation that assigns to each parameter in P a distinct memorable value

of (l, ξ). Suppose γ is a concretization of σ starting from (l, ξ) with valuation ζ, and

suppose γ is also a witness showing that ζ(p1) is memorable in state (l, ξ). Let h be

an automorphism and suppose γ′ is a concretization of σ starting from state h(l, ξ)

with valuation h ◦ ζ. Then γ′ is a witness showing that h(ζ(p1)) is memorable in state

h(l, ξ).

If M is an overapproximation of the set of memorable values after some state (l′, ξ′)

then, by concretizing lookahead trace σ for each injective valuation in P → M ,

Lemma 4.7 guarantees that we will find a witness in case there exists an automorphism

h from (l, ξ) to (l′, ξ′).

Instances of all lookahead traces are run in each new node to compute memorable

values. At any point in time, the set of values that occur in MemV (β) is a subset of the

full set of memorable values of node β. Whenever a memorable value has been added

to the observation tree, we require the tree to be lookahead complete. This means

every memorable value has to have an origin, that is, it has to stem from either the

memorable values of the parent node or the values in the preceding transition:

β′ = β i(d) o(e) ⇒ values(MemV (β′)) ⊆ values(MemV (β)) ∪ {d, e},

where function values returns the set of elements that occur in a list. We employ a

similar restriction on any non-fresh output parameters contained in the transition
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leading up to a node. These too have to originate from either the memorable values

of the parent, or the input parameter in the transition. Herein we differentiate from

the algorithm in [2] which only enforced this restriction on memorable values at the

expense of running additional lookahead traces.

The observation tree at the left of Figure 4.11 is not lookahead complete since output

value 1 of action Return(1) is neither part of the memorable values of the node β1

nor is it an input in Pop. Whenever we detect such an incompleteness, we add a new

lookahead trace (in this case Pop) and restart the entire learning process with the

updated set of lookahead traces to retrieve a lookahead complete observation tree. The

observation tree at the right is constructed after adding the lookahead trace Pop. This

trace is executed for every node constructed, as highlighted by the dashed edges. The

output values it generates are then tested if they are memorable and if so, stored in the

MemV set of the node. When constructing node β1, the lookahead trace Pop gathers

the output 1. This output is verified to be memorable and then stored in MemV (β1).

We refer to [2] for more details about algorithms for the lookahead oracle.

4.7 The Abstractor

The task of the abstractor is to rename the large set of concrete values of the SUL to

a small set of symbolic values that can be handled by the learner.

Let w0, w1, . . . be an enumeration of the set V \ {in, out}. If the SUL can be described

by a register automaton in which each location has at most n variables, then the

abstract values used by the abstractor will be contained in {w0, . . . , wn−1,⊥}. We

define a family of mappers AF , which are parametrized by a function F that assigns

to each input symbol a finite set of variables from V \ {in, out}. Intuitively, w ∈ F (i)

indicates that it is relevant whether the parameter of input symbol i is equal to w

or not. The initial mapper is parametrized by function F∅ that assigns to each input

symbol the empty set. Using counterexample-guided abstraction refinement, the sets

F (i) are subsequently extended.

The states of AF are injective sequences of values (that is, sequences in which each

value occurs at most once), with the initial state being equal to the empty sequence.

A sequence r = d0 . . . dn−1 ∈ Z∗ represents the valuation ξr for {w0, . . . , wn−1} given

by ξr(wj) = dj , for all j. Note that r is injective iff ξr is injective. The abstraction

function of mapper AF leaves the input and output symbols unchanged, but modifies

the parameter values. The actual value of an input parameter is replaced by the

variable in F (i) that has the same value, or by ⊥ in case there is no such variable. Thus

the abstract domain of the parameter of i is the finite set F (i) ∪ {⊥}. Likewise, the

actual value of an output parameter is not preserved, but only the name of the variable

that has the same value, or ⊥ if there is no such variable. The (injective) sequence r′

of memorable values that has been added as an annotation by the lookahead oracle

describes the new state of the mapper after an output action. The abstraction function

replaces r′ by an update function % that specifies how r′ can be computed from the
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old state r and the input and output values that have been received. Upon receipt of

a concrete output o(e r′) from the lookahead oracle, the abstraction function replaces

e by a variable that is equal to e, or to ⊥ if no such variable exists.

Definition 4.18. We define AF = 〈I ′ ∪O′, X ∪ Y,R, r0, δ, λ〉 where

• I ′ = I × Z,

• O′ = {o(d r) | o ∈ O ∧ d ∈ Z ∧ r ∈ Z∗ injective},
• X = {i(a) | i ∈ I ∧ a ∈ F (i) ∪ {⊥}},
• Y = {o(a, %) | o ∈ O ∧ a ∈ V ∪ {⊥} ∧ % ∈ V 9 V injective with finite domain},
• R = {r ∈ Z∗ | r injective},
• r0 = ε,

• δ(r, i(d)) = d r,

• δ(r, o(e r′)) = r′,

• Let r ∈ R and i(d) ∈ I ′. Then

λ(r, i(d)) =

{
i(ξ−1

r (d)) if d ∈ ran(ξr) and ξ−1
r (d) ∈ F (i)

i(⊥) otherwise

Let r = d s ∈ R and o(e r′) ∈ O′. Let ιi be the valuation that is equal to ξs if

d ∈ ran(ξs) and equal to ξs ∪ {(in, d)} otherwise. Similarly, let ιio be the valuation

equal to ιi if e ∈ ran(ιi) and equal to ιi ∪ {(out, e)} otherwise. Then ιio is injective

and ran(ιio) = ran(r) ∪ {e}. Suppose ran(r′) ⊆ ran(r) ∪ {e}. Then % = ι−1
io ◦ ξr′ is

well-defined and injective, and

λ(r, o(e r′)) =

{
(o(ι−1

i (e)), %) if e ∈ ran(ιi)

(o(⊥), %) otherwise

In the degenerate case r = ε or ran(r′) 6⊆ ran(r) ∪ {e}, we define λ(r, o(e r′)) =

(o(⊥), ∅).

Example 4.12. Consider an SUL that behaves as the FIFO-set model of Figure 4.2.

As a result of interaction with mapper AF∅ , the learner may succeed to construct the

abstract hypothesis shown in Figure 4.12. This first hypothesis is incorrect since it

l0start l1 l2

Push(⊥)/OK
w1:=in

Pop/NOK Push(⊥)/OK
w2:=in

Pop/Return(w1) Pop/Return(w1)
w1:=w2

Push(⊥)/NOK

Figure 4.12: First hypothesis for FIFO-set

does not check if the same value is inserted twice. This is because the Abstractor
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only generates fresh values during the learning phase. Based on the analysis of a

counterexample (to be discussed in the next section), Tomte will discover that it is

relevant whether or not the parameter of Push is equal to the value of w1. Consequently

F (Push) is set to {w1} and Tomte constructs a next hypothesis, for instance the one

shown in Figure 4.13. Note that, as the list of memorable values in the initial state is

l0start l1 l2

Push(⊥)/OK
w1:=in

Pop/NOK

Push(w1)/⊥

Push(⊥)/OK
w2:=in

Pop/Return(w1)
Push(w1)/NOK

Pop/Return(w1)
w1:=w2

Push(w1)/NOK

Push(⊥)/NOK

Figure 4.13: Second hypothesis for FIFO-set

empty, there is no concrete action Push(d) that is abstracted to action Push(w1) in l0.

By the second rule from Definition 4.10, an abstract output ⊥ is generated in this case.

Theorem 4.5. Let R be an input deterministic register automaton with input symbols

I and output symbols O such that each location has at most n registers. Let S be the

set of collision free neat traces of R, and let T = {OracleR(β) | β ∈ S}, that is the set

of traces from S in which each output action is annotated with a list of memorable

values of the corresponding target state. Let F be a function that assigns to each input

symbol a subset of {w0, . . . , wn−1}. Then U = αAF
(T ) is nonempty, prefix closed,

input complete and ≡U has finite index. If moreover F (i) = {w0, . . . , wn−1}, for all

i ∈ I, then U is behavior deterministic.

In order to show that an hypothesis is incorrect, we first need to concretize it. Using

the theory of [10] we get a concretization operator for free, but this concretization

operator produces unique-valued register automata in which each output is annotated

with the list of memorable values in the target state. Since unique-valuedness leads to

a loss of succinctness (and we no longer need the list of memorable values), we have

implemented in Tomte an alternative procedure to concretize an abstract deterministic

Mealy machine model to a right invariant register automaton:

1. Omit all transitions with output ⊥ (e.g. the Push(w1)-loop in location l0 of

Figure 4.13).

2. Whenever, for some location l and input symbol i, there are transitions l
i(⊥)/o(d),%−−−−−−−→

l′ and l
i(wj)/o(d),%−−−−−−−−→ l′, then omit the i(wj)-transition (e.g. the Push(w1)-loop in

location l2 of Figure 4.13; apparently it does not matter whether or not the

parameter of Push is equal to the value of w1).

3. If, for some location l and input symbol i, there are outgoing i(w)-transitions for

each w ∈W then add input guard
∧
w∈W in 6= w to the i(⊥) transition.
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4. If a transition has input label i(wj) then add input guard in = wj .

5. If a transition has output label o(⊥) then add output guard true.

6. If a transition has output label o(wj) then add output guard out = wj .

7. Replace input labels i(d) by i, output labels o(d) by o, and leave all the updates %

unchanged.

Example 4.13. If we apply the above procedure to the Mealy machine of Figure 4.12,

then we obtain the register automaton of Figure 4.8 (modulo variable renaming), and if

we apply it to the Mealy machine of Figure 4.13, then we obtain the register automaton

of Figure 4.2 (again modulo variable renaming).

In case function F assigns the maximal number of abstract values to each input, the

above concretization operator will produce a unique-valued register automaton that is

equivalent to the register automaton produced by the concretization operator of [10]

(if we forget the lists of memorable values in output actions). In cases where F is not

maximal, our concretization operator will typically produce register automata that are

not unique-valued. In the next section we will show how, when a flaw in the hypothesis

is detected during the hypothesis verification phase, the resulting counterexample can

be used for abstraction refinement.

4.8 The Analyzer

During equivalence testing, a test generation component uses the abstract hypothesis

to generate abstract test input sequences. This approach allows us to use standard

algorithms for FSM conformance testing such as Random Walk or a variation of the

W-Method [137]. These test sequences are then concretized, run on both the SUL

and the concretized hypothesis, and the resulting outputs are compared. The result is

either a concrete counterexample or increased confidence that the hypothesis model

conforms to the SUL.

Parameter values in the abstract model can either be ⊥ or a variable name. If an

abstract value is a variable name then the corresponding concrete value is uniquely

determined. In contrast, an abstract value ⊥ allows for infinitely many concretizations

and suggests that the SUL behavior is independent of the value picked. By testing we

can verify that this is the case. If testing produces a counterexample then this may

be used to refine the abstraction and introduce additional abstract values. To more

quickly discover such refinements, we test by concretizing ⊥ to different memorable

values.

As example, consider the login model of Figure 4.5. Figure 4.14 depicts the hypothesis

built after the first iteration of learning this system. Using the testing approach

described, Tomte will eventually find a concrete counterexample trace, say Login(9,9)

NOK Register(9,9) OK Register(12,12) NOK Login(9,9) OK. This sequence is a
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l0start l1
Register(⊥,⊥)/OK

Login(⊥,⊥)/NOK

Register(⊥,⊥)/NOK

Login(⊥,⊥)/NOK

Figure 4.14: Initial abstract hypothesis for login system

valid trace of the SUL but not of the hypothesis, since according to the hypothesis

the last output should be NOK. Tomte applies heuristics to reduce the length of

the counterexample, in order to simplify subsequent analysis and thus to improve

scalability. Two reduction strategies are used: (1) removing loops, and (2) removing

single transitions. The first strategy tries to remove parts of the trace that form

loops in the hypothesis. These may also form loops in the system and thus not

affect the counterexample. The second strategy tries to remove single transitions

from the counterexample. The idea behind this is that often different parts of the

system are independent of each other, so transitions from the part not causing the

counterexample can be removed. Applied to the login case, Tomte first removes

loops from the concrete counterexample, which results in the reduced counterexample

Register(9,9) OK Login(9,9) OK. Tomte then tries to eliminate each transition, but

as the resulting traces do not form counterexamples, this heuristic fails. As a final

processing step, the counterexample is made neat, thus becoming Register(0,0) OK

Login(0,0) OK. This is done solely to improve the counterexample’s readability.

The reduced counterexample is then analyzed by the process depicted in Figure 4.15.

The counterexample is first resolved by abstraction refinement. If no refinement can

be done, then an abstracted form of the counterexample is sent to the Mealy machine

learner, which uses it to further refine the abstract hypothesis.

Abstraction refinement means finding the concrete input parameters that are abstracted

to ⊥ but nevertheless form ’relevant’ relations with previous parameters. We say

that a relation between two parameters is relevant if breaking it by changing a

parameter’s value also breaks the counterexample. Consequently, the concrete values

of these parameters no longer fit ⊥, as they can only take a specific value for the

counterexample to hold. Based on relevant relations, we then update the lookahead

oracle and construct refined abstractions, that would better fit these parameters.

Initially, all parameters values are abstracted to ⊥. This changes as more refined

abstractions are created.

A first step to refining is disambiguation, by which any relations between two para-

meters present that are not relevant for the counterexample, are broken by replacing

the latter parameter of the relation with a fresh value. In our running example the

trace Register(0,0) OK Login(0,0) OK is changed to Register(0,1) OK Login(0,1) OK,

by virtue of the irrelevant equality between the username and password. Breaking

relations further would change the observed behavior into one with which the concrete

hypothesis would agree.
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disambiguate CE

find missing mem. values

refine abstractions

reduced CE

disambiguated CE

decorated CE
with all mem.

succ. = newAbs.notEmpty() or 
newLts.notEmpty()

new lts

Abstraction Refinement

succ.

yes/no

no

form abstract CE

abstract CE

give CE to 
learner

yes
restart

new 
abstractions

Figure 4.15: Counterexample analysis in Tomte

The disambiguated trace is then sent to the next process, which looks for any missing

memorable values and adapts the lookahead oracle so these can all be discovered.

The current memorable values are obtained by running the counterexample through

the lookahead oracle, which then decorates the trace by placing memorable value

lists at the start and after each transition. Such a trace for the login case would be

ε Register(0, 1) OK ε Login(0, 1) OK ε. Notice that all the sequences are empty, since

initially the lookahead oracle does not find any memorable values. For the last output

to be OK, the SUL requires that values 0 and 1 are reused in the Login-input, meaning

that the SUL should have remembered them, hence these values should have been

found memorable by the lookahead oracle. We say that the lookahead oracle ‘misses’

these values. In more concrete terms, we say that a parameter value is missing if it is

equal to a value from a previous transition, but not contained in the list of memorable

values that directly precedes the transition. For the login example, we notice that

both 0 and 1 appear as missing values in Login(0,1), since they first emerged in the

Register action but they were not included in the memorable set before Login.

The process iterates over the input actions of the decorated trace. Once it passes by an

input parameter whose value is judged to be missing, it builds a symbolic lookahead

trace that would allow the lookahead oracle to uncover this value. The counterexample

is then re-decorated through the augmented lookahead oracle and iteration continues

with the next parameter. The end result is a decorated trace which contains no missing

values. For the login case, the process updates the lookahead oracle and re-decorates
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the trace for each of Login’s parameters. The end result is the decorated trace where

both 0 and 1 are no longer missing: ε Register(0, 1) OK [0, 1] Login(0, 1) OK ε.

A trace decorated with all memorable values is then sent to the next process, which

further decorates the trace so that each concrete value is paired with its corresponding

abstract value. This is achieved by running the counterexample through both the

mapper (which adds the abstractions) and the lookahead oracle (which adds the

memorable values). In the login example, as initially ⊥ is the only abstract value

available, decoration results in the trace

ε Register(0 :⊥, 1 :⊥) OK [0, 1] Login(0 :⊥, 1 :⊥) OK ε.

This trace is then iterated and whenever (1) a concrete value is equal to a memorable

value, and (2) the corresponding abstraction is ⊥, a new abstract value is created for

the corresponding input symbol and the mapper is updated accordingly. Equality

with a memorable value results in an abstraction which simply points to an index in

the memorable value list after the previous transition. In the login example, the new

abstraction values for the Login-action are w1 for the first parameter, respectively w2

for the second, transforming the decorated trace into

ε Register(0 :⊥, 1 :⊥) OK [0, 1] Login(0 : w1, 1 : w2) OK ε.

The mechanisms of uncovering missing memorable values and new abstractions are

closely tied to proper disambiguation of the counterexample. Both these steps consider

any equalities between two parameters as relevant to the counterexample. Applying

the same process on an ambiguous counterexample might result in resolution of

false relations or missing relations which are confounded as was in the login case.

Without disambiguation, the counterexample Register(0, 0) OK Login(0, 0) OK would

have yielded only one missing value in 0, which would have lead to different refined

abstractions. One such abstraction would imply that it is relevant if the second Register

parameter is equal to the first, which is clearly not the case.

The final step of counterexample analysis is a simple check if new lookahead traces

or new abstract values have been discovered during the last pass. If so, learning

is restarted from scratch. Note that memorable values discovered by newly added

lookahead traces can have corresponding abstract values which have already been

created as a result of a previous refinements. Or the abstract values found might expose

relations with previous input values. Similarly, it may happen that the lookahead

oracle has already discovered all memorable values, yet for some of these values new

abstract values are defined. Learning needs to be restarted as LearnLib currently

does not accept on the fly changes to the input alphabet. Moreover, some of the

answers to queries from the learning phase might be invalidated by the discovery of

new memorable values.

If no new lookahead traces or abstract values have been discovered during a pass, then

an abstract version of the counterexample is forwarded to the Mealy machine learner.

Obtaining an abstract counterexample involves just running the counterexample
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through the mapper and lookahead oracle and only collecting the abstracted messages.

As an optimization, we also perform this step before abstraction refinement, as it is a

considerably cheaper yet just as likely.

According to Figure 4.15, counterexample analysis in Tomte has three possible outco-

mes: (1) a new lookahead trace is forwarded to the Lookahead Oracle and learning

is restarted, (2) a new abstract value is forwarded to the Abstractor and learning is

restarted, or (3) a counterexample is forwarded to the learner. By Lemma 4.7, step (1)

may only occur a finite number of times. Since the number of input symbols and the

number of abstract values are both finite, also step (2) may only occur a finite number

of times. If there are no more steps of type (1) or type (2) then, by Theorem 4.5 and

Theorem 4.3, the set of abstract traces that can be observed by the learner equals the

set of traces of some finite, deterministic Mealy machine. By correctness of the Mealy

machine learner, the learner will produce a correct hypothesis after a finite number

of queries. Thus we may conclude that our algorithm for learning register automata

terminates.

4.9 Evaluation and Comparison

In this section, we compare Tomte 0.41 to other learning tools on a series of benchmarks

including the Session Initiation Protocol (SIP), the Alternating Bit Protocol, the

Biometric Passport, FIFO-Sets, and a multi-login system. Apart from the last one,

all these benchmarks have already been used in [8] for the comparison of Tomte

0.3, a previous version of Tomte, and LearnLibRA. In [5], we compared Tomte

0.4 with LearnLibRA and Tomte 0.3, concluding that Tomte 0.4 performed best

in all but two benchmarks. Since then, RALib [54] has been released, a learner

building on LearnLibRA, adding several optimizations as well as enabling support

for theories other than equality. This made RALib a strong competitor, reporting

better numbers for a number of benchmarks. Tomte itself was also improved and can

now work with TTT [122], a new and fast algorithm for learning Mealy machines.

We focus our evaluation efforts on the more novel Tomte 0.41 and RALib. Readers

are referred to [8] and [5] for benchmarking of the 0.3 and 0.4 versions of Tomte and

LearnLibRA. Tomte 0.41 generally replicates the numbers obtained by version 0.4 in

those benchmarks.

Each experiment consists of learning a simulation of a model implementing a benchmark

system or, as in the case of the multi-login system, learning of an actual implementation.

Whenever possible we verified the learned model by performing an equivalence check

against the simulated model. For the multi-login system we ran a thorough suite of

tests. For the FIFO-Set models, we checked the models manually by analyzing the

number of states and guards in the learned model.

Tomte 0.41 can now be configured to work with different Mealy machine learners.

Traditionally, we have used the Observation Pack algorithm [113], which is enabled

in all versions of Tomte. Recently, we have adapted Tomte 0.41 to support the new
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TTT algorithm [122]. Similarly, RALib adopts a series of optimizations. We enable all

these optimizations apart from the one exploiting parameter typing (unlike in [54]),

since all benchmarks used are not typed.

Table 4.1 provides benchmarks for Tomte 0.41 using each of TTT and Observation Pack,

and RALib with the optimizations mentioned. Results for each model are obtained by

running each learner configuration 10 times with 10 different seeds. Over these runs

we collect the average and standard deviation for number of reset queries and inputs

applied during learning (denoted learn res and learn inp), counterexample analysis

(denoted ana res and ana inp) and testing (denoted test res and test inp). The

numbers for testing do not include queries run on the final hypothesis. As RALib

does not distinguish counterexample analysis from learning and testing, we exclude

statistics for this phase. A final statistic is success (succ), denoting for each model the

number of successful experiments, that is, experiments which ended with the correct

model learned. Since Tomte 0.41 is always successful, we exclude this statistic from

its columns.

For consistency, we use the same equivalence oracle across all learners, namely, a

random walk oracle configured with a maximum test query length of 100 and an

average length of 10, with a maximum of 1000000 tests per equivalence query. The

probability of selecting a fresh value is set to 0.1 . We opted for this algorithm, since it

was the only algorithm supported RALib. In contrast, Tomte 0.41 can also use more

advanced testing algorithms. When learning FIFO-Set 30 we increase the average

query length to 100, otherwise testing would most likely fail to find all counterexamples.

Similarly, for FIFO-Set 14 we increase it to 50.

We omit running times, as we consider the number of queries to be a superior metric

of measuring efficiency, but the reader may find them at 6. All models apart from the

multi-logins and large FIFO-Set models are learned in less than one minute. We limit

learning time to 20 minutes.

Results show that TTT significantly brings down the number of learning queries

needed by Tomte 0.41, at the cost of more test and counterexample analysis queries.

This cost is offset for all but the first model benchmarked. The extent of improvement

when we consider the sum of all inputs varies from roughly a 23 % reduction for the

SIP model to a factor of 8 reduction for the Palindrome Checker. We also notice that

the gap widens with the growing complexity of the models. Furthermore, improvement

would likely have been greater had a smarter testing algorithm been used.

RALib beats Tomte 0.41 on several models, particularly SIP and FIFO-Set 7. Unfor-

tunately, its performance is highly erratic, as shown by the high standard deviation.

Moreover, RALib is only partially successful at learning some models, while failing

completely to learn others. Ultimately, RALib shows promising numbers for some

experiments, while for others it seems to suffer a blow up in its algorithm. For the

larger models, like the FIFO-Set 30, RALib fails completely.

6http://automatalearning.cs.ru.nl/

http://automatalearning.cs.ru.nl/
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A cause of RALib’s fluctuating performance may be the impact the lengths of counterex-

amples have on its performance. Long counterexamples may lead to often unnecessarily

long suffixes which are very expensive for RALib to process. RALib’s underlying

algorithm is an adaptation of L∗ [19] for register automata which, like L∗, uses an

observation table. The performance of such algorithms has been shown to suffer due

to long counterexamples. By contrast, Tomte 0.41 leverages more advanced algorithms

that more effectively process these counterexamples [122].

The multi-login system benchmark can only be properly handled by Tomte 0.41. The

benchmark generalizes the example of Figure 4.3 to multiple users, while adding an

additional user ID parameter when logging in and registering. A configurable number

of users may register, enabling simultaneous login sessions for different registered users.

Tomte 0.41 was able to successfully learn instantiations of multi-login systems for 1, 2

and 3 users. RALib struggled to learn configurations with 1 user, while completely

failing for those with more users.

That said, Tomte 0.41’s learning algorithm also does not perform nor scale well for

higher numbers of users. This can be ascribed to the high number of global abstractions.

Such a number is owing to not only the large number of registers, but also to the

varying order in which memorable values are found per state.

A memorable value, be it login id or password, can take one index in one state, but

another index in a different state. As we use global abstractions, the memorable value

would require two distinct abstractions, even though only one is useful in each state.

This leads to a large number of abstractions required to cover all indexes memorable

values can take.

4.10 Conclusions and Future Work

We have presented a mapper-based algorithm for active learning of register automata

that may generate fresh output values. This class is more general than the one studied

in previous work [2,7,8,37,55,56]. We have implemented our active learning algorithm

in the Tomte tool and have compared the performance of Tomte using each of the

Observation Pack or the novel TTT algorithms, to that of RALib on a large set of

benchmarks. We measured the total number of inputs required for learning, testing and

counterexample analysis. For a set of common benchmarks, TTT helps in significantly

bringing down the number of queries used overall. RALib proves competitive but

cannot reliably learn all models. In particular, RALib struggles to learn login systems

generating fresh passwords. In contrast, Tomte is able to learn models of register

automata with fresh outputs, including these systems. Our method for handling fresh

outputs is highly efficient and the computational cost of the determinizer is negligible

in comparison with the resources needed by the lookahead oracle and the abstractor.

Our next step will be an extension of Tomte to a class of models with simple operations

on data.
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Chapter 5

Learning-Based Testing the Sliding

Window Behavior of TCP Implementations

We develop a learning-based testing framework for register automaton models

that can express the windowing behavior of TCP, thereby presenting the first

significant application of register automata learning to realistic software for a

class of automata with Boolean-arithmetic constraints over data values. We

have applied our framework to TCP implementations belonging to different

operating systems and have found a violation of the TCP specification in Linux

and Windows. The violation has been confirmed by Linux developers.

5.1 Introduction

Automata provide both formal and intuitive means of specifying the behavior for a

wide range of applications, in particular network protocols. Unfortunately, protocol

specifications often are textual and rarely include state machine models. Without

such models, it is difficult to test if an application behaves as expected. Manual

construction of models is a laborious and error-prone process and models become

outdated as soon as the specification changes. Learning-based testing, as sketched in

Figure 5.1, alleviates this problem by generating models while testing a system. These

models cannot serve as specifications but can be used to check desired properties, which

are usually easier to formalize and maintain than complete behavioral models.

Integrating model learning, model-based testing, and model checking allows a tester

to automatically obtain a model for a system under test. For a set of test inputs,

model learning runs a series of tests on the system until, eventually, it will produce a

conjectured model of the system’s behavior. This model is used as the basis for model-

based testing. Testing can discover counterexamples, which indicate incorrectness

of the model. In such case, model learning is restarted, being provided with the

counterexample. Once no counterexample is found, the model can be used for checking

properties. The output of learning-based testing is threefold: model learning produces a
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Figure 5.1: Learning-Based Testing with Additional Checking of Properties.

conformance test suite for the model [29], checking of properties can produce examples

that document the violation of a specification, and in case no violation is found, testing

can yield a conformance guarantee.

In order to instantiate learning-based testing for a certain class of models, one needs a

learning algorithm and a testing algorithm for this class of models. In this chapter,

we present a learning-based testing framework for a class of register automata that

can express the windowing behavior of TCP. Our framework utilizes the SL∗ learning

algorithm for register automata [58] and a random walk testing algorithm for such

register automaton models. The testing algorithm ensures approximate correctness of

models with a high confidence. We manually inspect models and find a violation of

the TCP specification in Linux and Windows implementations.

Work in this chapter is the first significant application of register automata learning to

realistic software for a class of automata with Boolean-arithmetic constraints over data

values. Our results show that, on the one hand, learning more expressive models can

ease the burden of manually constructed sophisticated test harnesses. On the other

hand, experiments show that model learning for more expressive models is very expen-

sive. Future work will focus on scaling learning-based testing to industrial applications

as well as on integrating automated model checking into our approach.

Related Work. Learning-based testing in the form that we present here is based on

the observation that model learning and model-based testing are merely two sides of

the same coin [202]. The term has been introduced in [152] for a combination of model

learning, model checking, and random testing. In contrast to work in this chapter,

the approach is based on finite state models. On the other hand, model checking is

automated and feed the model learning algorithm with counterexamples, leading to

higher degree of automation.

Learning-based techniques have been steadily gaining traction for more than a decade,

after pioneering work on learning and testing CTI systems [101] and learning and

checking systems [170]. Previous applications of learning-based testing or checking
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have lead to the discovery of flaws in TLS implementations [181] and of various forms

of specification non-compliance in TCP [87,88] and SSH [89] implementations. What

all these case studies have in common, is the difficulty of manually constructing a

sophisticated test harness for the system. This is in large part caused by the need to

abstract away from system functionality, so that the functionality seen by the learner

fits within the less expressive formalism the learner can infer, typically mealy machines

or DFAs. Our learning setup can infer more expressive register automata, and requires

no form of abstraction other than a general one for handling fresh values.

Outline. We provide a brief introduction to TCP in the next section before pre-

senting our learning-based testing framework in Section 5.3. We discuss application

of our framework on real TCP implementations in Section 5.4, before concluding in

Section 5.5.

5.2 The Sliding Window Behavior of TCP

The Transport Control Protocol (TCP) is a widely used transport layer protocol of

the TCP/IP stack, with implementations provided by all operating systems. TCP

ensures reliable data transfer between parties. In order to communicate, a TCP client

and server application must first establish a TCP connection, which is done by way

of a handshake. They can then exchange data over the established connection until

one of the parties decides to terminate the connection. A closure procedure ensues,

which ultimately removes the connection. In all stages of the protocol, interaction

is done by exchanging TCP segments. These segments are often the result of calls

on the socket interface, which is available to each side and provides access to TCP

services. Moreover, each side keeps track of the state of the connection. TCP uses

sequence numbers and a sliding receive window to keep track of which segments have

been received and acknowledged by the other party. This helps compensate for a

potentially lossy communication channel in which reordering of segments can occur

(e.g., due to changing routing of segments).

For the sake of exposition, let us assume a setting in which all segments are 1 byte in

size. As sequence numbers encode the relative position of a segment in a byte stream,

this assumption allows us to confuse the relative position segment in a sequence of

segments with its position in a byte stream.

Sequence Numbers. To achieve reliable data transfer, TCP uses sequence and

acknowledgement numbers, and flags which are included in the header of all TCP

segments. In a stream of segments from a sender to a receiver, the sequence number

encodes the relative number of a segment in such a stream. The receiver acknowledges a

received segment by responding with a segment including as acknowledgement number

the next expected sequence number. Sequence numbers are generated relative to

an Initial Sequence Number (ISN), so the first segment has sequence number ISN,
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ignore

Figure 5.2: TCP handshake, connection closure, and data transfer with re-transmission.

Labels show flags, sequence and acknoweldgement numbers. 1 byte of payload marked

by (X). Initial Sequence Numbers marked by (ISN).

the second ISN+1... As data is sent, the sequence number increases, as does the

acknowledgement number in responses.

Receive Window. Segments received with a sequence number greater than the one

expected fall in two categories: those whose sequence number falls within a receive

window of that expected and those whose sequence number falls outside of the receive

window. The former should be processed by the receiver, the latter should be treated

as invalid. As a concrete example, only reset segments (segments with the RST flag

enabled) with the sequence number within the receive window are processed, and may

reset the connection, those whose number lies outside should be ignored. The receive

window is included in the TCP header and its value is communicated in each TCP

segment a side sends.

Sliding Windows. Once a received segment is successfully processed, the receive

window can be moved forward: if a sequence number of a received segment is equal

to the sequence number expected, the expected sequence number is increased. If not

equal, the expected sequence number is left unchanged. Acknowledgement numbers

are also checked. Those equal to the last sequence number sent acknowledge all

segments up to this last one. Those greater are unacceptable as they acknowledge

segments not yet sent. Those smaller than the last sequence number sent are old

acknowledgements. Segments with unacceptable or old acknowledgement numbers are

generally discarded.

As stated above, sequence numbers and receive windows are used, among other things,

to deal with reordering of routed segments and to prevent the processing of (bytes in)

old segments, which are segments carrying already seen data with sequence numbers

smaller than the those expected. Old segments are often the result of re-transmissions,

which happen when a timeout for receiving an acknowledgement has expired. TCP is

full duplex, which means communicating sides maintain two byte streams, one for each

direction. Each side keeps track of the next sequence number to be sent, as well as the
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Figure 5.3: Relevant Relations of Sequence Numbers in TCP.

sequence number expected from the other side. To open (via handshake), maintain

and close the two byte streams, TCP uses control flags. The SYN flag, for example,

marks the beginning of a byte stream, whereas the FIN flag marks the end. Figure 5.2

gives sequence diagrams for typical TCP scenarios.

The description so far assumed that all segments were 1 byte in size. In actuality, the

size of a segment is the size of the payload carried, plus 1 if either SYN or FIN flags

are enabled, or 0 otherwise. We restrict the learning setting to one where segments

carry no payload (thus segments are either of size 0 or 1).

Figure 5.3 depicts the relevant relations sequence numbers may have relative to a

current sequence number, in line with our earlier description. These relations are

equality and inequality over the current sequence number, and over its summation to

one (for segments including either FIN or SYN), and to the receive window size.

5.3 Instantiating Learning-Based Testing for TCP

In order to apply learning-based testing to the windowing behavior of TCP, we

instantiate the components of the framework that were sketched in Section 5.1. We use

the SL∗ active learning algorithm for learning register automaton models [58]. Active

learning algorithms rely on the existence of a minimally adequate teacher (cf. [19]) that

answers two kinds of queries for the learning algorithm: output queries (i.e., execution

of tests) and equivalence queries. The learning algorithm submits a conjectured model

to an equivalence oracle and expects a counterexample to the model (if one exists).

In our scenario, we implement this oracle by performing model-based testing on the

model.

The SL∗ algorithm additionally assumes the existence of a tree oracle. A tree oracle

produces register automata fragments that encode the relevant data relations for a

sequence of actions on a SUT. The resulting setup is shown in Figure 5.4. In order to

infer symbolic transitions, e.g., for input ACK(p1, p2) with two data parameters p1

and p2 from a state that is reached in the protocol by sending a message SY N(10, 0)

and receiving message SY N +ACK(20, 11), the SL∗ algorithm will perform a tree

query for prefix SY N(10, 0) and suffix ACK. The tree oracle will generate output

queries for all relevant concrete instances of ACK messages capturing possible relations
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Figure 5.4: Learning Register Automaton Models from Tests.

between values of p1, p2 and data values in the prefix (e.g., equality, being a sequence

number, or being in a window). The determinizer component will test if output queries

are valid traces of a TCP implementation by exchanging actual TCP packages with

a system under learning (sul). The tree oracle encodes the observed behavior and

relevant relations as a symbolic decision tree.

In the remainder of this section, we present register automata for the windowing

behavior of TCP, tree queries that capture all relevant data relations, and use the

presented ideas as a basis for instantiating model-based testing in our framework.

5.3.1 Register Automata

We assume a set Σ of actions, each with an arity that determines how many values from

N it takes as parameters (e.g., ACK takes two data values). To simplify presentation,

we assume that all actions have arity 1, but it is straightforward to extend to the case

where actions have arbitrary arity. A data symbol is a term of form α(d), where α is

an action and d ∈ N is a data value. A data word is a sequence of data symbols. The

concatenation of two data words w and w′ is denoted ww′. In this context, we often

refer to w as a prefix and w′ as a suffix. For a data word w = α1(d1) . . . αn(dn), let

Acts(w) denote its sequence of actions α1 . . . αn, and V als(w) its sequence of data

values d1 . . . dn. Let |w| denote the number of symbols in w.

While there are infinitely many data words for every sequence of actions with data

parameters, many of these data words are equivalent when considering only relations

between data values (e.g., equality, being a sequence number, or being in a window). For

a set of relations R, data words w = α1(d1) . . . αn(dn) and w′ = α1(d′1) . . . αn(d′n) are

R-indistinguishable, denoted w ≈R w′, if R(di1 , . . . , dij ) iff R(d′i1 , . . . , d
′
ij

) whenever R

is a relation in R and i1, · · · , ij are indices among 1 . . . n. We use [w]R to denote the

set of words that are R-indistinguishable from w. A data language L is a set of data

words that respects R in the sense that w ≈R w′ implies w ∈ L ↔ w′ ∈ L.

In order to capture the windowing behavior of TCP, we define the set of relations

R = {R⊗,c : ⊗ ∈ {<,≤,=,≥, >} ∧ c ∈ {0, 1, 100}}, and relation R⊗,c ⊂ N×N such

that xR⊗,cy iff x+ c⊗ y. Relations R⊗,0 encode equality and an order on the sets of

sequence numbers. Relations in R⊗,1 encode the successor relation between sequence

numbers and R⊗,100 describes windows (of size 100).

We assume a set of registers x1, x2, . . . that can store data values of data words. A

parameterized symbol is a term of form α(p), where α is an action and p a formal
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parameter. An atomic guard g over p is a logic formula of form (xi + c ⊗ p) with

⊗ ∈ {<,≤,=,≥, >} and c ∈ {0, 1, 100}. We allow for aggregation of atomic guards

into intervals of form (g1 ∧ g2), where atomic guards g1 and g2 specify a lower and an

upper bound on p, respectively. A valuation ν : {p, x1, x2, . . .} 7→ N satisfies a guard g

if g[ν] = g[ν(p)/p][ν(x1)/x1][. . .] is true and we write ν |= g in this case.

An assignment is a simple parallel update of registers with values from registers

or the formal parameter p. We represent an assignment which updates the regis-

ters xi1 , . . . , xim with values from the registers xj1 , . . . , xjn or p as a mapping π

from {xi1 , . . . , xim} to {xj1 , . . . , xjn} ∪ {p}, meaning that the value of the register or

parameter π(xik) is assigned to the register xik , for k = 1, . . . ,m.

Definition 5.1 (Register automaton). A register automaton (RA) is a tuple A =

(L, l0,X ,Γ, λ), where

• L is a finite set of locations, with l0 ∈ L as the initial location,

• X maps each location l ∈ L to a finite set X (l) of registers, and

• Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

– l ∈ L is a source location,

– l′ ∈ L is a target location,

– α(p) is a parameterized symbol,

– g is a guard over p and X (l), and

– π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

• λ maps each l ∈ L to {+,−}.

We require register automata to have no initial registers (i.e., X (l0) = ∅) and to

be completely specified in the sense that for each location l ∈ L and action α, the

disjunction of the guards on the α-transitions from l is equivalent to true.

RA Semantics Let us formalize the semantics of RAs. A state of an RA A =

(L, l0,X ,Γ, λ) is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over X (l), i.e., a mapping

from X (l) to D. A step of A, denoted 〈l, ν〉 α(d)−−−→ 〈l′, ν′〉, transfers A from 〈l, ν〉 to

〈l′, ν′〉 on input of the data symbol α(d) if there is a transition 〈l, α(p), g, π, l′〉 ∈ Γ

with

• ν |= g[d/p], i.e., d satisfies the guard g under the valuation ν, and

• ν′ is the updated valuation with ν′(xi) = ν(xj) if π(xi) = xj , otherwise ν′(xi) = d

if π(xi) = p.

A run of A over a data word w = α(d1) . . . α(dn) is a sequence of steps of A

〈l0, ν0〉
α1(d1)−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn)−−−−→ 〈ln, νn〉

for some initial valuation ν0. The run is accepting if λ(ln) = + and rejecting if

λ(ln) = −. The word w is accepted (rejected) by A under ν0 if A has an accepting
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Figure 5.5: Potential (left), maximally refined (u, v̂)-tree (center), and canonic guards

(right) for u with νu = {x1 7→ 1, x2 7→ 2} and v̂ with |v̂| = 1. Actions omitted.

(rejecting) run over w which starts in 〈l0, ν0〉. An RA is determinate if there is no data

word over which it has both accepting and rejecting runs. In this case we interpret an

RA A as a mapping from the set of data words to {+,−}, where + stands for accept

and − for reject. When using register automata as models for reactive system, we

refine the set of actions into inputs and outputs (cf. [54]).

5.3.2 Tree Queries

For a data language L, a data word u with V als(u) = d1, . . . , dk, and a set V of

sequences of actions (so-called abstract suffixes), a (u, V )-tree is a decision tree (a

tree-shaped RA) T = (L, l0,X ,Γ, λ) with root l0 and X (l0) ⊆ {x1, . . . , xk} that (1)

has runs over exactly all data words v with Acts(v) ∈ V and that (2) accepts a data

word v from 〈l0, νu〉 iff uv ∈ L. Please note, that we do not require X (l0) to be empty

for decision trees and let νu such that νu(xi) = di for xi ∈ X (l0) and di the i-th data

value of u.

A tree oracle for L is a function O that for any prefix u and set of abstract suffixes V

constructs a (u, V )-tree O(u, V ). In other words, O(u, V ) is the tree oracle’s answer to

a tree query with prefix u and abstract suffixes V . The SL∗ algorithm systematically

poses tree queries to a tree oracle, combining resulting symbolic decision trees (SDTs)

into a conjectured model. We can implement a tree oracle by starting with a maximally

refined symbolic decision tree that has one unique sequence of transitions for every

R-indistinguishable class of words [uv]R with Acts(v) ∈ V and then compute a more

concise tree by iteratively merging equivalent subtrees.

Maximally refined SDTs. For simplicity, we describe the generation of a maximally

refined symbolic decision tree for a prefix u and a single abstract suffix v̂. This allows

us to omit actions from the presentation. For |V als(u)| = k, the potential of u is the

set of terms (xi + c) with 1 ≤ i ≤ k and c ∈ {0, 1, 100} that can appear in guards

after u. The valuation νu (with νu(xi) = di for di ∈ V als(u)) induces an order on the
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Figure 5.6: Merging Sub-Trees of an SDT.

terms in the potential. An example of this order is shown on the left of Figure 5.5 for

a word u with two data values.

Omitting the trivial case of the empty sequence, let |v̂| = 1 for the moment. We

generate guards for cases p smaller than the smallest term in the potential of u, p equal

to one of the terms, p in the interval between two successive terms, and p greater than

any term in the potential of u. These guards are maximally refined: each (satisfiable)

guard describes one class [uv]R of R-indistinguishable words. We instantiate each

guard with the help of a constraint solver and use an output query to determine if

uv ∈ L. Figure 5.5 (middle) exemplifies the construction. As indicated by gray lines

on the left of the figure, some terms in the potential are equal. For these cases we

pick one of the equal terms as the basis for guards. Gray colored guards cannot be

instantiated and are omitted.

In the general case of |v̂| > 1, we apply the above technique iteratively, generating

sequences of guards and transitions for the parameters of v̂. We maintain data values

of the suffix symbolically during sequence generation and only instantiate complete

sequences of guards. The approach scales to sets of suffix sequences as we construct

maximally refined paths: paths of suffixes with common prefixes will have common

guards for those prefixes and can be expressed as trees.

Maximally abstract SDTs and Monotonicity. In order to guarantee convergence of

learning on a canonical automaton, the SL∗ makes some monotonicity requirements

on tree oracles [58]. For growing sets of abstract suffixes V, V ′, . . . with V ⊂ V ′,

it has to be shown that O(u, V ′) refines O(u, V ) by only adding registers to X (l0),

and only refining guards of transitions. Additionally, if decision trees O(u, V ) and

O(u′, V ) cannot be made equal under some renaming of registers from X (l0) in one

tree, trees O(u, V ′) and O(u′, V ′) cannot become equal either by such a renaming.

These conditions trivially hold on maximally refined SDTs. Unfortunately, however,

maximally refined SDTs do not lead to finite models during learning as the shape of a

tree depends on the length of the prefix. We transform maximally refined SDTs into

more abstract trees by merging transitions and equivalent sub-trees (akin to BDD

minimization), thereby hiding irrelevant structural differences between trees.

The essential idea is that two (u, V )-trees T and T ′ are semantically equivalent after

u, denoted by T ≡u T ′, if both trees accept the same set of suffixes under initial

valuation νu with νu(xi) = di for di ∈ V als(u). We can check semantic equivalence

with finitely many test runs (i.e., one for each path in a maximally refined SDT for
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SL∗:

SUL:

SY N, 10, 0

SY N, 10, 0

λi

SY N +ACK, 20, 11

SY N +ACK, 99, 11
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. . .

. . .
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Figure 5.7: Translation between Neat Trace and sul Trace.

V ). Let now l be a location in T with outgoing transitions to la and lb, guarded by

ga and gb, respectively, as sketched in Figure 5.6. For some new guard gab, equivalent

to (ga ∨ gb), we construct T ′ from T w.l.o.g. by removing the transition from l to la
and the sub-tree rooted at la. On the transition from l to lb, we replace gb by gab (cf.

right part of the figure). We abstract ga and gb into gab if T ≡u T ′.
In order to arrive at a canonical representation, we perform merging in a fixed order:

we always merge guards for the smallest possible terms with respect to the order on

the potential (cf. maximally refined trees). This ensures that merging always results

in intervals. An example is shown on the right of Figure 5.5. Merged guards are

obtained from top (smaller terms) to bottom (greater terms).

Our semantic merging process satisfies all three requirements: Adding more suffixes

(and hence paths) cannot lead to merging subtrees that could not be merged before.

Guards are refined into finer intervals. Since the original boundaries will be maintained,

monotonic growth of registers follows. Finally, since abstract trees are semantically

equivalent to maximally refined trees, differences between trees are preserved when

adding suffixes.

Output queries observe the behavior of the sul on a sequence of test inputs. In

learning-based testing, these queries are computed by executing tests on the actual

system under test.

Testing has to be done in an adaptive fashion, synchronizing data values that are used

in test inputs by the learning algorithm and those used in actual tests as the sul may

introduce new sequence numbers during tests. As an example, the learning algorithm

may assume to receive a message SY N +ACK with (new) sequence number 1. Then,

in the actual communication the sul sends a random new sequence number.

To tackle this problem, the work [5] introduces a determinizer component, placed

between the learner and the sul. This component provides the learner with a

deterministic, or ’neat’ view of the sul, by constructing and applying a 1 to 1 mapping

from regular values to neat values. This mapping transforms all relation equivalent

traces (input/output sequences) encountered to a single neat trace. The learner then

infers the sul only in terms of its neat traces.

Output Queries.

We extend the determinizer concept to a setting with inequalities and sums. Our
definition focuses on data values and ignores actions, which are invariant under mapping.
The determinizer is the mapper D = 〈R, r0, δi, δo, λi, λo〉 over states R = {r ⊆ N×N |
r finite and one-to-one} with initial state r0 = ∅. Value transformations (λ) and
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mapper updates (δ) are defined for c ∈ 0, 1, 100 and x, y, n,m ∈ N as follows.

λi(r, n) =



x+ c if m+ c = n for some (x,m) ∈ r
smaller(dom(r)) if m+ c > n for all (·,m) ∈ r
fresh(dom(r)) if m+ c < n for all (·,m) ∈ r
(x+ y)/2 else; for (x− c1,ml − c1), (y − c2,mu − c2) ∈ r

s.t. (ml < n < mu) and (mu −ml) minimal

λo(r, x) =

{
n+ c if y + c = x for some (y, n) ∈ r
fresh(ran(r)) otherwise

δi(r, n) =

{
r if (·, n) ∈ r
r ∪ { (λi(r, n), n) } otherwise

δo(r, x) =

{
r if (x, ·) ∈ r
r ∪ { (x, λo(r, x)) } otherwise

There, dom and ran denote domain and image of a function. Functions fresh : N∗ → N
and smaller : N∗ → N generate fresh values and smaller values. For X ⊂ N we use

the concrete functions fresh(X) := (bmax(X)) ÷ suc + 1) × su and smaller(X) :=

(bmin(X)÷ slc − 1)× sl. Step sizes su and sl are fixed big enough to avoid collisions

(accidental relations between data values) during experiments.

Figure 5.7 shows an example application of the mapper, producing a neat trace from

Figure 5.2. Whenever the system generates an output, the determinizer processes it by

replacing the output values with neat values before delivering the output to the learner.

Conversely, on generating a concrete input, the learner passes it to the determinizer

which replaces neat input values with regular values, and sends the resulting input to

the sul. Every time it processes a value, the determinizer updates its state.

5.3.3 Model-Based Testing

We instantiate the testing part of our framework with a relative simple adaptation

of a random algorithm to the scenario of register automaton models. For a register

automaton model A, each test run begins by traversing the model to a randomly

selected location of A and is continued by a random sequence of inputs until either

a discrepancy is discovered between model and system under test, or until the run

terminates and a new run starts.

Our extension consists in selecting data values for inputs. For a run with current

prefix w and next input α, we use the machinery introduced above (the potential of a

word, and symbolic guards that describe classes [wα(d)]R of data words) as a basis for

computing a pool of data values for α. The pool contains one data value d for each

R-indistinguishable class [wα(d)]R of data words. We add a bias to the selection of

data values, so that values in or related to those stored in registers in A after running

over w are more likely to be picked.

We can easily obtain a PAC-inspired conformance guarantee (cf. [206]) with this

testing method for the probability distribution on the set of data words induced by a
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model A and the above strategy for selecting tests. With respect to this distribution,

A is an ε-approximation of sul if
∑
w∈S Pr(w) ≤ ε for the symmetric difference

S of sets of words accepted by A and sul. The probability of A not being an ε-

approximation of the sul after performing k independent test runs is at most (1− ε)k.

For some confidence value δ, we simply choose k such that (1− ε)k < δ (i.e., such that

k > ln(δ)/ln(1− ε).

5.4 Testing TCP Implementations

We have implemented the theories introduced earlier into RALib [54]. We then set

up an experimental setup through which we could connect RALib to various TCP

clients. RALib inferred models, which we checked manually for conformance with the

specification.

5.4.1 Experimental Setup

The experimental setup used to learn TCP is similar to the setup used in [87] and [88].

As in those works, the alphabet used to learn TCP defines two types of inputs. The

first type is packet inputs, used to describe TCP segments sent to the system. These

inputs are parameterized by TCP flag combinations, sequence and acknowledgement

numbers. The second type of inputs is socket inputs such as connect and close,

referring to the methods defined by the socket interface. Outputs defined are packet

outputs, which bear the same structure as packet inputs and describe TCP segments

generated by the system, and timeouts, which suggest that no output was generated

by the system. For model learning, we use the SL∗ algorithm with the theory and

optimizations discussed earlier. Additionally, we used techniques for reducing the size

of counterexamples as shorter counterexamples tend to lead to shorter suffixes, which

greatly decreases the number of inputs needed to run. For sample techniques and a

corresponding discussion we refer to [131]. Model-based testing was done using the

algorithm described in the previous section. Finally, to speed up learning, we used

multiple sul instances in parallel. In particular during testing, tests were distributed

and run evenly among the instances. We could reliably use up to 3 instances in parallel.

Above that number, we encountered instances of missed responses. This could be

improved upon with a more efficient setup.

5.4.2 Experiments and Results

We attempted to learn TCP client implementations of Linux, FreeBSD and Windows.

We chose clients, since they are simpler to learn and contain less redundancy compared

to servers (cf. [88]). In terms of the configurations used, we disabled adaptive receive

windows (or window scale), so that receive windows remain fixed over the course of

each test. Moreover, in the segments sent to the sul we advertise the same receive
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Table 5.1: Learning Statistics. BASE stands for Baseline. [T] marks Use of Typing.

SUL Alpha. Term.
Inp. Num. Learning Testing

Loc. Hyp. Inputs Resets Inputs Resets

Linux 3.19

[T]BASE yes 6 15 4,311 947 113,921 11,720

BASE yes 6 15 9,930 2,168 116,479 12,339

[T]BASE+ACK yes 8 21 77,922 13,414 119,768 12,289

FreeBSD 11.0

[T]BASE yes 6 16 4,239 933 113,953 11,708

BASE yes 6 16 9,958 2,152 116,446 12,333

[T]BASE+ACK no 8 21 418,977 80,200 81,024 8,367

Windows 10 BASE-CLOSE no 6 14 193,712 24,848 119,768 12,289

window as that of the sul. Doing so we avoid having to include an additional sum

constant for our own receive window.

Our baseline alphabet consists of the connect, SYN+ACK, ACK+RST, RST and close

inputs. This alphabet covers several states in the specification. The alphabet should

also reveal how suls in these states react to RST segments. These segments are

generated in cases where one side abruptly terminates a connection and should be

processed only if their sequence numbers are in window of the expected. We have also

extended the alphabet with the ACK input if learning with the baseline was successful.

To obtain models in an adequate time, we do not explore data relations between all

formal parameters in some experiments. This optimization has been introduced as

typing of symbolic parameters in [54].

Once a hypothesis was constructed, we tested it using the algorithm presented earlier.

We have set the size of the random sequence to 10 (sufficient for exploring the behavior

we are interested in) and ran 15, 000 tests on the final hypothesis. Using the confidence

metric from the previous section, this yields a confidence of more than 99, 9% that a

model is an 0.05%-approximation of the sul for data words up to a length of 10 —

relative to the probability distribution our randomized testing algorithm generates

over the set of data words.

Table 5.1 reports the setting, termination status and learning statistics for all expe-

riments done. The setting indicates the concrete sul, the alphabet relative to the

baseline and whether typing was used. Successful experiments took at most two days

to complete, the determining factors being the size in parameters of the suffixes and

the 0.3 seconds wait time used for each response before concluding a timeout. We

automatically terminated experiments still unresolved after 500, 000 inputs. For these

experiments, we still display the last hypothesis and learning numbers at the point of

termination. Results are available on RALib’s website.1

Using both un-typed and typed baseline alphabets we inferred models for Linux and

FreeBSD. We inferred a model for Linux using the ACK-extended typed alphabet, but

not for BSD. Learning FreeBSD for this setting followed a similar course to learning

Linux, leading to a similar hypothesis. Testing generated a counterexample, whose

1See: https://goo.gl/23VNfv

https://goo.gl/23VNfv
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l0
INIT

l1
SYN SENT

l5

CLOSED

l2

ESTABLISHED

l3

FIN WAIT

l4

FIN WAIT

CONNECT /
S|F (f ,0)
r1:=f

SA(p1,p2) | true
r1:=p2

/
R|F (r1,0)
−

SA(p1,p2) | r1+16=p2
r1:=p2;r2:=r1

/
R|F (r1,0)
r1:=r2

SA(p1,p2) | r1+1=p2
r1:=p1;r2:=p2

/
A|F (r2,r1+1)

r1:=p2

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /

A|F (r2,r1)
−

CLOSE /
FA|F (r2,r1)

−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /

A|F (r2,r1)
−

R(p1,p2) | r1<p1≤r1+29200
− ,

RA(p1,p2) | r1<p1≤r1+29200
− ,

SA(p1,p2) | true
− /

A|F (r2,r1)
−

R(p1,p2) | r1=p1
− ,

RA(p1,p2) | r1=p1
− /TO

RA(p1,p2) | r1+1=p2
− /TO

Figure 5.8: Model of Linux Client. Flags are replaced by their starting characters

(i.e. FIN by F, SYN by S). TO denotes a timeout, f denotes a fresh value. We group

inputs with guards soliciting the same output and assignment over registers and use

input/output notation. Inputs have guards over parameters. In outputs, parameters

are instantiated.

processing resulted in a long new suffix. The suffix proved too expensive for tree

queries to terminate within the input bounds set.

We couldn’t learn Windows models even after removing the CLOSE input. Analysis of

the last conjectured model and the generated tests revealed behavior inconsistent with

the specification: Windows accepts sequence numbers up to and including window size

plus one in the ESTABLISHED state for RST inputs. This helps demonstrate a limitation

of our approach: relevant data relations R are an input to learning and convergence is

guaranteed only for systems that respect R (cf. Section 5.3.1).

5.4.3 Analysis of Conformance to RFC

Before reflecting upon the models learned, we mention a bug discovered while con-

ducting experiments. In our attempt to learn the TCP Linux client with an alphabet

comprising the baseline plus the ACK+FIN packet, we noticed that, while in the

FIN WAIT state, the Linux client upon receiving an ACK+FIN segment with an invalid

acknowledgement number, would still process and acknowledge the FIN flag. This

would have shown up in the learned model, unfortunately, poor scalability meant

we could not learn a model for this setup. The bug was reported and subsequently

fixed2.

2See: https://www.spinics.net/lists/netdev/msg436743.html

https://www.spinics.net/lists/netdev/msg436743.html
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#d e f i n e a f t e r ( seq2 , seq1 ) be f o r e ( seq1 , seq2 )

stat ic i n l i n e bool be f o r e ( u32 seq1 , u32 seq2 ) {
return ( s32 ) ( seq1−seq2 ) < 0 ;

}
stat ic i n l i n e bool tcp sequence (

const struct tcp sock ∗tp , u32 seq , u32 end seq ) {
return ! b e f o r e ( end seq , tp−>rcv wup) &&

! a f t e r ( seq , tp−>rcv nxt + tcp receive window ( tp ) ) ;

}

Listing 5.9: Relevant Code of TCP Implementation in Linux Kernel.

Figure 5.8 presents the model learned for Linux using the baseline alphabet. The models

learned for FreeBSD and Linux are near identical with one exception. Linux defines an

in-window sequence number as a value up to and including rcv.nxt+ win (for a next

expected sequence number rcv.nxt). FreeBSD excludes the upper bound. Windows,

on the other hand, even seems to include rcv.nxt+ win+ 1. RFC 793 [176, page 26]

specifies that an in-window sequence smaller is strictly smaller than rcv.nxt+ win.

Thus, FreeBSD conforms to the upper bound requirement whereas Linux and Windows

do not. For Linux, we trace this violation to code in the most recent kernel, v4.11.3

Listing 5.9 shows the relevant code snippets. To check whether a sequence number

is not after the window, they use the !(seq > rcv.nxt + win) conjunct, allowing

rcv.nxt+win to be within the window. We inquired Linux developers about this issue

and they confirmed it and said they would issue a fix for it. During our experiments,

we have uncovered a different, unrelated, bug relating to faulty re-transmissions for

which a fix has been issued.

Aside from that, reset processing seems to be implemented as stated in the RFC with

the remark that both systems implement the ’Blind Reset Attack Using RST Bit’ safe

guard introduced in RFC 5961 [179, page 7], by which only RST segments with the

sequence number equal to the expected sequence number cause the termination of

a connection. RST segments whose sequence number is in window but not equal to

the expected sequence number prompt a ’challenge ACK response’. We can verify

that this is the case by analyzing the Linux model’s responses to RST segments in

the ESTABLISHED and FIN WAIT1 states. As a note, RFC 5961 might have been the

cause of the inconsistency remarked previously. As of this writing, RFC 5961 gives a

wrong description of the within/outside window conditions of RFC 793. The error

had been reported in 2016 and is included in the RFC errata4.

5.5 Conclusion

Work in this chapter introduces the first application of register automata learning to

real networked systems, in the form of TCP clients. To that end, we have developed

3See: https://goo.gl/9A8ZYM
4See: https://www.rfc-editor.org/errata/rfc5961

https://goo.gl/9A8ZYM
https://www.rfc-editor.org/errata/rfc5961
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the theories needed to learn TCP into the learning framework of [58]. We implemented

heuristics that improve scalability of learning and developed a component that deals

with non-determinism in fresh data values. The application of our learning-based

testing setup resulted in models for TCP client implementations of Linux and FreeBSD.

Our setup helped reveal violation of the RFC 793 standard [176] in Linux and Windows.

In Linux we identified the root cause for the violation in the Kernel code.

In a next step, we plan to produce models for extended sets of inputs and models

of TCP servers. Despite the optimizations used, we eventually faced combinatorial

blow up in the number of required tests. Combining learning with static or symbolic

analysis methods may help reducing this blow up by identifying more precisely the

relations one should test for. This will also address the limitation of fixed relations

that prevented us from learning a model for Windows.



Chapter 6

Model Learning as a Satisfiability Modulo

Theories Problem

We explore an approach to model learning that is based on using satisfiability

modulo theories (SMT) solvers. To that end, we explain how DFAs, Mealy

machines and register automata, and observations of their behavior can be

encoded as logic formulas. An SMT solver is then tasked with finding an

assignment for such a formula, from which we can extract an automaton of

minimal size. We provide an implementation of this approach which we use

to conduct experiments on a series of benchmarks. These experiments address

both the scalability of the approach and its performance relative to existing

active learning tools.

6.1 Introduction

We are interested in algorithms that construct black-box state diagram models of

software and hardware systems by observing their behavior and performing experiments.

Developing such algorithms is a fundamental research problem that has been widely

studied. Roughly speaking, two approaches have been pursued in the literature:

passive learning techniques, where models are constructed from (sets of) runs of the

system, and active learning techniques, that accomplish their task by actively doing

experiments on the system.

Gold [96] showed that the passive learning problem of finding a minimal DFA that is

compatible with a finite set of positive and negative examples, is NP-hard. In spite of

these hardness results, many DFA identification algorithms have been developed over

time, see [108] for an overview. Some of the most successful approaches translate the

DFA identification problem to well-known computationally hard problems, such as

SAT [107], vertex coloring [91], or SMT [161], and then use existing solvers for those

problems.
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Angluin [19] presented an efficient algorithm for active learning a regular language L,

which assumes a minimally adequate teacher (MAT) that answers two types of queries

about L. With a membership query, the algorithm asks whether or not a given word

w is in L, and with an equivalence query it asks whether or not the language LH of a

hypothesized DFA H is equal to L. If LH and L are different, a word in the symmetric

difference of the two languages is returned. Angluin’s algorithm has been successfully

adapted for learning models of real-world software and hardware systems [170,178,205],

as shown in Figure 6.1. A membership query (MQ) is implemented by bringing the

TQs

SUL

CT

MQs

EQ

Learner Teacher

Figure 6.1: Model learning within the MAT framework.

system under learning (SUL) in its initial state and the observing the outputs generated

in response to a given input sequence, and an equivalence query (EQ) is approximated

using a conformance testing tool (CT) [137] via a finite number of test queries (TQ).

If these test queries do not reveal a difference in the behavior of a hypothesis H and

the SUL, then we assume the hypothesis model is correct.

Walkinshaw et al. [213] observed that from each passive learning algorithm one can

trivially construct an active learning algorithm that only poses equivalence queries.

Starting from the empty set of examples, the passive algorithm constructs a first

hypothesis H1 that is forwarded to the conformance tester. The first counterexample

w1 of the conformance tester is then used to construct a second hypothesis H2. Next

counterexamples w1 and w2 are used to construct hypothesis H3, and so on, until no

more counterexamples are found.

In this chapter, we compare the performance of existing active learning algorithms

with passive learning algorithms that are ‘activated’ via the trick of Walkinshaw et

al. [213]. At first, this may sound like a crazy thing to do: why would one compare

an efficient active learning algorithm, polynomial in the size of the unknown state

machine, with an algorithm that makes a possibly superpolynomial number of calls [20]

to a solver for an NP-hard problem? The main reason is that in practical applications

i/o interactions often take a significant amount of time. In [184], for instance, a case

study of an interventional X-ray system is described in which a single i/o interaction

may take several seconds. Therefore, the main bottleneck in these applications is the

total number of membership and test queries, rather than the time required to decide

which queries to perform. Also, in practical applications the state machines are often

small, with at most a few dozen states (see for instance [3, 11,184]). Therefore, even
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though passive learning algorithms do not scale well, there is hope that they can still

handle these applications. Active learning algorithms rely on asking a large number

of membership queries to construct hypotheses. Passive learning algorithms pose no

membership queries, but instead need a larger number of equivalence queries, which

are then approximated using test queries. A priori, it is not clear which approach

performs best in terms of the total number of membership and test queries needed to

learn a model.

Our experiments compare the original L∗ [19] and the state-of-the-art TTT [122]

active learning algorithm with an SMT-based passive learning algorithm on a number

of practical benchmarks. We encode the question whether there exists a state machine

with n states that is consistent with a set of observations into a logic formula, and

then use the Z3 SMT solver [76] to decide whether this formula is satisfiable. By

iteratively incrementing the number of states we can find a minimal state machine

consistent with the observations. As equivalence oracle we use a state-of-the-art

conformance testing algorithm based on adaptive distinguishing sequences [136,191].

In line with our expectations, the passive learning approach is competitive with the

active learning algorithms in terms of the number of membership and test queries

needed for learning.

An advantage of SMT encodings, when compared for instance with encodings based

on SAT or vertex coloring, is the expressivity of the underlying logic. In recent years,

much progress has been made in extending active learning algorithms to richer classes

of models, such as register automata [5, 58, 115] in which data may be tested and

stored in registers. We show that the problem of finding a register automaton that

is consistent with a set of observations can be expressed as an SMT problem, and

compare the performance of the resulting learning algorithm with that of Tomte [5],

a tool for active learning of register automata, on some simple benchmarks. New

algorithms for active learning of FSMs, Mealy machines and various types of register

automata are often extremely complex, and building tools implementations often takes

years [5, 58, 122]. Adapting these tools to slightly different scenarios is typically a

nightmare. One such scenario is when the system is missing reset functionality. This

renders most active learning tools impractical, as these rely on the ability to reset

the system. Developing SMT-based learning algorithms in settings with and without

resets only took us a few weeks. This shows that the SMT-approach can be quite

effective as a means for prototyping learning algorithms in various settings.

The rest of this chapter is structured as follows. Section 6.2 describes how one

can encode the problem of learning a minimal consistent automaton in SMT. The

scalability and effectiveness of our approach, and its applicability in practice are

assessed in Section 6.3. Conclusions are presented in Section 6.4.
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6.2 Model Learning as an SMT Problem

This section describes how to express this problem in a logic formula. If and only if

there exists an assignment to the variables of this formula that makes it true, then

exists an automaton A with at most n states that is consistent with S. We use an

SMT solver to find such an assignment. If the SMT solver concludes that the formula

is satisfiable, then its solution provides us with A.

We distinguish three types of constraints:

• axioms must be satisfied for A to behave as intended by its definition.

• observation constraints must be satisfied for A to be consistent with S.

• size constraints must be satisfied for A to have n states or less.

Hence, the problem can be solved by iteratively incrementing n until the encoding of

the axioms, observation constraints and size constraints is satisfiable.

In the following subsections, we present encodings for deterministic finite automata

(Section 6.2.1 and Section 6.2.2), Moore and Mealy machines (Section 6.2.3), register

automata (Section 6.2.4), and input-output register automata (Section 6.2.5). Exten-

sions for all automata without registers also appear in a preliminary version of this

work [192].

6.2.1 An Encoding for Deterministic Finite Automata

A deterministic finite automaton (DFA) accepts and rejects strings , which are sequences

of labels. We define a DFA as follows:

Definition 6.1. A DFA is a tuple (L,Q, q0, δ, F ), where

• L is a finite set of labels,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× L→ Q is a transition function for states and labels,

• F ⊆ Q is a set of accepting states.

Let x be a string. We use xi to denote ith label of x. We use x[i,j] to denote

the substring of x starting at position i and ending at position j (inclusive), i.e.

x = x[1,|x|].

A DFA A accepts a string if its computation ends in an accepting state. This can be

formalized as follows. Let x ∈ L∗ be a string, then A accepts x if a sequence of states

q′0 . . . q
′
|x| exists such that

1. q′0 = q0,

2. q′i = δ(q′i−1, xi) for 1 ≤ i ≤ |x|, and
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3. q′|x| ∈ F .

Let S+ be a set of strings that should be accepted, and let S− be a disjoint set of

strings that should be rejected. Let S be the set that contains all of these strings,

along with their labels, i.e. S = {(x, true) : x ∈ S+} ∪ {(x, false) : x ∈ S−}. A DFA

is consistent with S if it accepts all strings in S+, and rejects all strings in S−.

This leads us to a natural encoding for finding a consistent DFA in satisfiability

modulo the theories of inequality and uninterpreted functions. We encode a DFA as

follows:

• Q is a finite subset of the (non-negative) natural numbers N,

• q0 = 0,

• The set of accepting states F is encoded as a function λ : Q → B, such that

q ∈ F ⇐⇒ λ(q) = true.

The following size constraint ensures that A has at most n states:

∀q ∈ {0, . . . , n− 1} ∀l ∈ L
n−1∨
q′=0

δ(q, l) = q′ (6.1)

If we assume without loss of generality that the initial state is 0, then we can add the

following constraints for the strings in S+:

∀x ∈ S+ λ( δ(. . . δ(δ(0, x1), x2), . . . x|x|) ) = true (6.2)

Similarly, we can add the following constraints for the strings in S−:

∀x ∈ S− λ( δ(. . . δ(δ(0, x1), x2), . . . x|x|) ) = false (6.3)

6.2.2 A Better Encoding for Deterministic Finite Automata

The nesting in the set of constraints given by Equation 6.2 and Equation 6.3 might

lead to many redundant constraints for the theory solver. To give an example, if two

strings share a non-empty prefix, the prefix is encoded twice, once for each string. One

solution is to define the constraints implied by strings in a non-nested way. Similarly

to Heule and Verwer [107], and Bruynooghe et. al. [49], we use an observation tree

(OT) for this. This can be considered a partial, tree-shaped automaton that is exactly

consistent with S, i.e. it accepts only the set S+ and rejects only the set S−. We

define an OT for a set of labeled strings in Definition 6.2.

Definition 6.2. An OT for a set of strings S = {S+, S−} is a tuple (L,Q, λ), where

• L is a set of labels,

• Q = {x ∈ L∗ : x is a prefix of a string in S+ ∪ S−},
• λ : S+∪S− → B is a output function for the strings, with x ∈ S+ ⇐⇒ λ(x) = true.
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Now, let us explain how one can construct a set of constraints for finding a DFA

A = (L,QA, q0, δ
A, F ) that is consistent with an OT T = (L,QT , λT ) for a given

set S = {S+, S−}. Let us (again) consider the set of states QA as a set of non-

negative integers with q0 = 0, and let us encode the set of accepting states F as

a function λ : Q → B, such that q ∈ F ⇐⇒ λ(q) = true. Recall that a DFA is

consistent if and only if it accepts all strings in S+ and rejects all strings in S−, i.e.

for each x in S λA(δA(q0, x)) = λT (x) (we slightly abuse notation here by extending

δA : Q× L∗ → Q to strings). Such a DFA has at most as many states as the OT (but

typically significantly less). Therefore, there must exist a surjective (i.e. many-to-one)

function from the strings of the OT to states of the DFA:

map : QT → QA (6.4)

Our goal is to find a set of constraints for map that make sure that our target DFA A

is consistent. For this we define the following observation constraints:

map(ε) = q0 (6.5)

∀xl ∈ QT : x ∈ L∗, l ∈ L δA(map(x), l) = map(xl) (6.6)

∀x ∈ S+ ∪ S− λA(map(x)) = λT (x) (6.7)

Equation 6.5 maps the empty string to the initial state of A. Equation 6.6 encodes the

observed prefixes as transitions of A while Equation 6.7 encodes the observed outputs,

with λA encoding F .

To meet the minimality requirement, we are interested in finding the ‘smallest’ map

function; i.e. there should be no function with a smaller image that satisfies these

constraints. For this purpose we can re-use one of the size constraints presented earlier

(Equation 6.2).

6.2.3 Adaptations for Moore and Mealy Machines

An advantage of the encoding presented in Section 6.2.2 (as opposed to the one

presented in Section 6.2.1) is that it can easily be modified to learn transducers.

Transducers are automata that generate output strings. As such, they can be used to

model input-output behaviour of software.

A Moore machine is a transducer that generates an output label initially and each

time it (re-) enters a state. We define a Moore machine in Definition 6.3.

Definition 6.3. A Moore machine is a tuple (I,O,Q, q0, δ, λ), where

• I is a finite set of input labels,

• O is a finite set of output labels,

• Q, q0 and δ are a set of states, the initial state, and a transition function respectively,

and

• λ : Q→ O is a output function that maps states to output labels.
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A set of observations S for a Moore machine consists of traces , which are pairs (xI , xO)

where xI ∈ I∗ is an input string and xO ∈ O∗ is an output string with |xO| = |xI |+ 1.

A Moore machine is consistent with a set S if for each (xI , xO) ∈ S it generates xO

when provided with xI .

A Mealy machine is a transducer that generates an output label each time it makes a

transition. We define a Mealy machine in Definition 6.4.

Definition 6.4. A Mealy machine is a tuple (I,O,Q, q0, δ, λ), where

• I,O,Q, q0 and δ are the same as for a Moore machine (Definition 6.3), and

• λ : Q× I → O is a output function that maps transitions to output labels.

A set of observations S for a Mealy machine consists of traces (xI , xO) where xI ∈ I∗
is an input string and xO ∈ O∗ is an output string with |xO| = |xI |. Similarly to a

Moore machine, a Mealy machine is consistent with a set S if for each (xI , xO) ∈ S it

generates xO when provided with xI .

It has been shown that Moore and Mealy machines are equi-expressive if we neglect

the initial output label generated by a Moore machine (see e.g. [110]). Therefore, we

can define an OT for a set S of traces for a Moore or Mealy machine A = (I,O,QA,

q0, δ
A, λA) in a similar way. We choose to define such an input-output observation tree

(IOOT) as follows.

Definition 6.5. An IOOT for a set of traces S is a tuple (I,O,Q, λ), where

• I and O are sets of input labels and output labels respectively,

• Q = {x ∈ I∗ : x is a prefix of an input string of a trace in S},
• λ : Q → O is a output function with λ(xI[0,i]) = xOi for all (xI , xO) ∈ S and

1 ≤ i ≤ |xI |.

Observe that λ is defined for all states. Also, observe that there is no need for λ to be

a transition output function for Mealy machines, because there is only one string that

ends in each state of an IOOT.

Let T = (I,O,QT , λT ) be an IOOT for a set of traces S, then we can determine if

there is a Moore or Mealy machine A with at most n states that is consistent with S by

using the set of constraints and axioms from Section 6.2.2, if we replace Equation 6.7

with Equation 6.8 (Moore machines) or Equation 6.9 (Mealy machines).

∀x ∈ QT λA(map(x)) = λT (x) (6.8)

∀xl ∈ QT : x ∈ I∗, l ∈ I λA(map(x), l) = λT (xl) (6.9)

6.2.4 An Encoding for Register Automata

DFAs and Mealy machines typically do not scale well if the domain of inputs, or

the domain of data parameters for inputs, is large. The reason for this is that the
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semantics of the data parameters are modeled implicitly using states and transitions;

inputs with different parameters are simply regarded as different inputs. A better

solution is to use a richer formalism that can model them more efficiently and exploit

the resulting symmetries in the state space.

A register automaton (RA) is such a formalism. An RA can be seen as an automaton

that is extended with a set of registers that can store data parameters. The values

in these registers can then be used to express conditions over the transitions of the

automaton, or guards. If the guard is satisfied the transition is fired, possibly storing

the provided data parameter (this is called an assignment) and bringing the automaton

from the current location to the next. As such, an RA can be used to accept or reject

sequences of label-value pairs. In contrast to automata without memory, the “states”

in a register automaton are called locations because the state of the automaton also

comprises the values of the registers. Therefore, an exponential number of possible

states can be modeled using a small number of locations and registers.

The RAs that we define here have the following restrictions:

right invariance Transitions do not imply (in) equality of distinct registers.

non-swapping Values are never moved from one register to another.

unique values Registers always store unique values.

The first two restrictions are inherent to the definition used, the third is necessary

to avoid the non-determinism caused by two used registers holding the same value.

While these restrictions may cause a blow-up in the number of states required to be

consistent with a set of action strings [53], it has been shown that they do not affect

expressivity [6, Theorem 1], i.e. for any register automaton that does not have these

restrictions, there exists an equivalent register automaton in the class that we are

concerned with. For a formal treatment of these restrictions and their implications,

we refer to [5] and [53].

We define an RA as follows.

Definition 6.6. An RA is a tuple (L,R,Q, q0, δ, λ, τ, π), where

• L, Q, q0 and λ are a set of labels, a set of locations, the start location, and a location

output function respectively,

• R is a finite set of registers,

• δ : Q× L× (R ∪ {r⊥})→ Q is a register transition function,

• τ : Q×R→ B is a register use predicate, and

• π : Q× L→ (R ∪ {r⊥}) is a register update function.

We call a label-value pair an action and denote it l(v) for input label l and parameter

v. We assume without loss of generality that parameter values are integers (Z). A

sequence of actions is called an action string , and is denoted by σ. A set of observations

S for an RA consists of action strings that should be accepted S+, and a set of action
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strings that should be rejected S−. An RA is consistent with S = {S+, S−} if it

accepts all action strings in S+, and rejects all action strings in S−.

Formally, an RA can be considered as a DFA (Definition 6.1) enriched with a finite

set of registers R and two additional functions. The first function, τ , specifies which

registers are in use in a location. In a location q there can be two types of transitions

for a label l and parameter value v:

• If the value v is equal to some used register r, then the transition δ(q, l, r) is taken.

• Else (if the value v is different to all used registers), the fresh transition δ(q, l, r⊥)

is taken.

The second function, π, specifies if and where to store a value v when this fresh

transition (δ(q, l, r⊥)) is taken:

• If π(q, l) = r⊥ then the value v on transition δ(q, l, r⊥) is not stored.

• Else (if π(q, l) = r for some register r ∈ R), the value v on transition δ(q, l, r⊥) is

stored in register r.

Let us describe the axioms that we need for the RA to behave as intended. First, we

require that no registers are used in the initial location:

∀r ∈ R τ(q0, r) = false (6.10)

Second, if a register is used after a transition, it means that it was used before, or it

was updated:

∀q ∈ Q ∀l ∈ L ∀r ∈ R ∀r′ ∈ (R ∪ {r⊥})
τ(δ(q, l, r′), r) = true =⇒ ( τ(q, r) = true ∨ (r′ = r⊥ ∧ π(q, l) = r) ) (6.11)

Third, if a register is updated, then it is used afterwards:

∀q ∈ Q ∀l ∈ L ∀r ∈ R π(q, l) = r =⇒ τ(δ(q, l, r⊥), r) = true (6.12)

Our goal is to learn an RA that is consistent with a set of action strings S = {S+, S−}.
For this, we need to define a function that keeps track of the valuation of registers

during runs over these action strings. Let A = (L,RA, QA, q0, δ
A, λA, τA, πA) be an

RA, and let T = (L × Z, QT , λT ) be an OT for S. In addition to the map function

(Equation 6.4), we define a valuation function val that maps a state of T and a register

of A to the value that it contains:

val : QT ×RA → Z (6.13)

Before we construct constraints for the action strings, we determinize them by making

them neat [10, Definition 7]. An action string is neat if each parameter value is

either equal to a previous value, or equal to the largest preceding value plus one.

Let a be a parameterized input, and let a(3)a(1)a(3)a(45) be an action string, then
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a(0)a(1)a(0)a(2) is its corresponding neat action string, for example. Aarts et al. show

that in order to learn the behavior of a register automaton it suffices to study its neat

action strings, since any other action string can be obtained from a neat one via a

zero respecting automorphism [10, Section 5].

Constructing constraints for an RA is a bit more involving than for the formalisms

that we have discussed so far. First, we map empty string to the initial location of A

(Equation 6.5). Second, we assert that a register is updated if its valuation changes,

and that it is not updated if it keeps its value:

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) 6= val(σ, r) =⇒ πA(map(σ), l) = r (6.14)

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) = val(σ, r) =⇒ πA(map(σ), l) 6= r (6.15)

Additionally, we assert the inverse (i.e. that a register’s valuation changes if and only

if it is updated):

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) =

v
if δA(map(σ), l, r⊥) = map(σl(v))

∧ π(map(σ), l) = r

val(σ, r) otherwise

(6.16)

Third, we encode the observed transitions:

∀σl(v) ∈ QT

map(σl(v)) =

δ
A(map(σ), l, r)

if ∃!r ∈ R : τA(map(σ), r) = true

∧ val(σ, r) = v

δA(map(σ), l, r⊥) otherwise

(6.17)

Finally, we encode the observed outputs. This can be done in the same way as for

DFAs (see Equation 6.7).

The task for the SMT solver is to find a solution that is consistent with these constraints.

Obviously, we are interested in an RA with the minimal number of locations and

registers. The number of locations can be limited in the same way as states were

limited for DFAs (see Equation 6.1). The number of registers is defined by the variables

r that we quantify over in the presented equations. Therefore, they can be limited as

such. In our case, the number of registers is never higher than the number of locations

(because we can only update a single register from each location). Hence, the learning

problem can be solved iteratively incrementing the number of locations n, and for

each n incrementing the number of registers from 1 to n, until a satisfiable encoding

is found.
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6.2.5 An Extension for Input-Output Register Automata

An input-output register automaton (IORA) is a register automaton transducer that

generates an output action (i.e. label and value) after each input action. As in the

RA-case, we restrict both input and output labels to a single parameter. Input and

output values may update registers. Input values may be tested for (dis-)equality with

values in registers. Output values can be equal to the stored values, or may be fresh.

As such, an input-output register automaton can be used for modeling software that

produces parameterized outputs.

For a formal description of IORAs we refer to [10]. We define an IORA in Definition 6.7.

Again, in the interest of our encoding, our definition is very different from that in [10].

Despite this, the semantics are similar.

Definition 6.7. An IORA is a tuple (I,O,R,Q, q0, δ, λ, τ, π, ω), where

• I and O are finite, disjoint sets of input and output labels,

• R, Q, q0, τ and π are the same as for an RA (Definition 6.6),

• δ : (Q∪{q⊥})× (I ∪O)× (R∪{r⊥})→ (Q∪{q⊥}) is a register transition function

with a sink location,

• λ : (Q ∪ {q⊥})→ B is a location output function with a sink location, and

• ω : Q→ B is a location type function that returns true if a location is an input

location, and false if it is an output location.

A set of observations S for an IORA consists of action traces, which are pairs (σI ,

σO) where σI ∈ (I × Z)
∗

is an input action string , and σO ∈ (O × Z)
∗

is an output

action string with |σI | = |σO|. An IORA is consistent with a set S if for each pair

(σI , σO) ∈ S it generates σO when provided with σI .

Despite that semantically an IORA is a transducer, we define it as an RA (Definition 6.6)

which distinguishes between input and output labels, and which defines an additional

function ω for the location type. From an input location transitions are allowed only

for input actions. After an input action the IORA reaches an output location, in which

a single transition is allowed. This transition determines the output action generated

in response, as well as the input location the IORA will transition to. Transitions that

are not allowed lead to a designated sink location, which is denoted q⊥.

Using this definition allows us to incorporate the axioms defined for our RA encoding

(Equations 6.10–6.12) also in our IORA encoding. To these, we add the following

axioms for an IORA to behave as intended.

First, observe that we do not use λ as an output function for an IORA. Instead, we

use it to denote which locations are allowed. Hence, we require that the sink location

q⊥ is the only rejecting location:

∀q ∈ (Q ∪ {q⊥}) λ(q) =

{
false if q = q⊥

true otherwise
(6.18)
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Second, we require that transitions do not lead to the sink location:

∀q ∈ Q ∀o ∈ O ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, o, r) = q⊥ (6.19)

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, i, r) = q⊥ (6.20)

∀l ∈ I ∪O ∀r ∈ (R ∪ {r⊥}) δ(q⊥, l, r) = q⊥ (6.21)

Finally, we require that input locations are input enabled (Equation 6.22), and that

there is only one transition possible in an output location (Equation 6.23):

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, i, r) 6= q⊥ (6.22)

∀q ∈ Q ∃!o ∈ O ∃!r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, o, r) 6= q⊥ (6.23)

Our goal is to learn an IORA A = (I,O,RA, QA, q0, δ
A, λA, τA, πA, ωA) that is consis-

tent with a set of action traces S. Because of the nature of our encoding, we consider

each action trace σ = (σI , σO) in S as an interleaving of the input action string σI and

the output action string σO, i.e. σ = σI1σ
O
1 . . . σI|σI |σ

O
|σI |. Let T = ((I ∪O)×Z, QT , λT )

be an OT for such strings.

The constraints for an IORA can now be constructed in the same way as for an RA

(Equation 6.5 and Equation 6.14–6.17). Observe that we do not use λ to encode the

observed outputs (this is already done by encoding the transitions of the OT). Instead,

λ is used to denote which locations are allowed. All the locations in Q are allowed

(because we have observed them) and q⊥ is the only location that is not allowed

(λ(q⊥) = false by Equation 6.18). As such, we add the following constraint:

∀σ ∈ QT map(σ) 6= q⊥ (6.24)

We can now determine if there is an IORA with at most n locations and m registers

in the same way as for RAs, i.e. by iteratively incrementing the number of locations n,

and for each n incrementing the number of registers from 1 to n, until a satisfiable

encoding is found.

6.3 Implementation and Evaluation

We implemented our encodings using Z3Py, the Python front-end of Z3 [76]1. Our tool

can generate an automaton model from a given set of observations (passive learning),

or a reference to the system and a tester implementation (active learning), also when

this system cannot be reset. We have also implemented a tester for the classes of

automata supported. The tester generates test queries (or tests) each test consisting

of an access sequence to an arbitrary state in the current hypothesis, and a sequence

generated by a random walk from that state. In experiments, we configure the tester

to build shorter tests. Longer tests worsen the scalability of our tool, and are unneeded

1See https://gitlab.science.ru.nl/rick/z3gi/tree/lata

https://gitlab.science.ru.nl/rick/z3gi/tree/lata
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for learning small models. All experimental results shown were obtained using our most

efficient encodings, namely, those involving an OT and not relying on linear equalities

(all other encodings performed considerably worse in terms of scalability).Validity

of the learned models was ensured by running a large number of tests on the last

hypothesis and checking the number of states. We conducted a series of experiments

to assess the scalability and effectiveness of our approach.

Our first experiment assesses the scalability of our encodings by adapting the scalable

Login, FIFO set and Stack benchmarks of [5] to DFAs, Mealy machines, RAs and

IORAs. The systems benchmarked are IORA by nature, and are parameterizable by

their size, which refers to either the maximum number of registered users, or to the

size of the collection. The systems only generate ok and nok labels as output, joined

by no parameters. This facilitates the generation of RA/Mealy/DFA representations

by applying an adapter over the system, exposing an interface corresponding to the

respective formalism. The RA adapter, for example, accepts a sequence of inputs

only if all outputs generated by the system are ok, otherwise it rejects the sequence.

Our adaptation made the Mealy and DFA versions of FIFO set and Stack systems

equivalent, hence we only consider FIFO sets for these formalisms. The Login systems

are simplified by removing the password parameter (so login, register and logout

are done solely by supplying a user id), as our implementation does not yet support

actions with multiple parameters. To generate tests, we used the testing algorithm

described earlier. The maximum length of the random sequence is 3 + size, where size

is the number of users or elements in the system. The solver timeout – the amount of

time the solver was provided to compute a solution or indicate its absence – was set to

10 seconds for the DFA and Mealy systems, and to 10 minutes for the RA and IORA

systems whose constraints could take considerably longer to process. We initially

terminated learning runs whenever the SMT solver failed to return a result within this

time bound (or the SMT solver timed out). We then realized that even in cases where

the SMT solver timed out, it might still find a solution in a subsequent iteration (for

a greater n). This solution might not be minimal, but it was nevertheless consistent

with past observations. We thus allowed each learning run to iterate until an upper

bound was reached. For each system we performed 5 learning runs and collated the

resulting statistics.

Results are shown in Table 6.1. Columns describe the system, the number of successful

learning runs, the number of states/locations (which may vary due to loss of minimality)

and registers (where applicable), average and standard deviation for the number of

tests and inputs used in learning except for validating the last hypothesis, and for the

amount of time learning took. The table only includes entries for systems we could

learn.

In our second experiment we used our tool to learn simulated models obtained by

the learning case studies described in [3,11,184]. These models are Mealy machines

detailing aspects of the behavior of bankcard protocols, biometric passports and

power control services (PCS). For the purpose of this experiment we connected the
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Table 6.1: Scalable experiments

Model succ states regs tests inputs time(sec)

loc avg std avg std avg std

DFA FIFOSet(1) 5 3.0 17.0 8.28 53.0 36.35 0.44 0.07

DFA FIFOSet(2) 5 4.0 19.0 10.33 80.0 45.58 0.68 0.11

DFA FIFOSet(3) 5 5.0 28.0 12.71 141.0 69.99 1.83 0.46

DFA FIFOSet(4) 5 6.0 48.0 41.12 294.0 293.18 3.44 0.42

DFA FIFOSet(5) 5 7.0 108.0 19.62 788.0 161.23 7.24 1.54

DFA FIFOSet(6) 5 8.0 125.0 42.06 953.0 361.76 22.34 9.03

DFA FIFOSet(7) 5 9.0 136.0 34.52 1126.0 344.18 28.55 12.65

DFA FIFOSet(8) 5 10.0 228.0 81.11 2156.0 832.02 76.28 42.49

DFA FIFOSet(9) 2 11.5 413.5 161.93 4194.0 2104.35 199.99 26.1

DFA Login(1) 5 4.0 100.0 30.8 432.0 140.46 3.06 0.52

DFA Login(2) 5 7.0 167.0 95.4 932.0 618.15 14.94 2.54

DFA Login(3) 5 11.0 446.0 100.18 3092.0 781.73 131.84 39.26

Mealy FIFOSet(1) 5 2.0 4.0 1.1 14.0 5.12 0.13 0.0

Mealy FIFOSet(2) 5 3.0 9.0 2.51 39.0 12.54 0.49 0.09

Mealy FIFOSet(3) 5 4.0 16.0 5.32 90.0 30.96 0.71 0.07

Mealy FIFOSet(4) 5 5.0 14.0 8.64 108.0 62.35 1.44 0.64

Mealy FIFOSet(5) 5 6.0 24.0 11.03 166.0 86.08 1.96 0.27

Mealy FIFOSet(6) 5 7.0 36.0 14.85 307.0 151.59 3.81 0.8

Mealy FIFOSet(7) 5 8.0 41.0 14.38 373.0 138.2 9.7 2.57

Mealy FIFOSet(8) 5 9.0 90.0 26.53 928.0 310.48 20.87 2.73

Mealy FIFOSet(9) 5 10.0 131.0 22.68 1547.0 296.28 34.64 5.67

Mealy FIFOSet(10) 5 11.0 162.0 66.45 1948.0 787.28 60.08 12.93

Mealy FIFOSet(11) 5 12.0 280.0 110.65 3694.0 1722.57 79.75 23.69

Mealy FIFOSet(12) 4 15.5 370.0 200.12 5021.0 3312.85 227.15 290.99

Mealy FIFOSet(13) 2 14.5 526.5 318.91 8021.5 5608.06 190.36 51.96

Mealy Login(1) 5 3.0 12.0 5.45 52.0 21.43 0.78 0.07

Mealy Login(2) 5 6.0 44.0 12.15 264.0 83.27 6.37 1.09

Mealy Login(3) 5 10.0 104.0 10.03 726.0 69.93 52.4 4.83

Mealy Login(4) 1 16.0 241.0 0.0 2094.0 0.0 370.19 0.0

RA Stack(1) 5 3.0 1 32.0 21.18 109.0 90.48 3.18 0.86

RA Stack(2) 5 5.0 2 202.0 71.88 1018.0 394.58 124.72 53.41

RA FIFOSet(1) 5 3.0 1 49.0 12.92 180.0 52.56 4.94 6.07

RA FIFOSet(2) 5 6.0 2 365.0 88.41 2025.0 578.33 333.09 334.12

RA Login(1) 5 4.0 1 306.0 163.18 1336.0 765.23 54.96 9.99

RA Login(2) 3 8.0 2 1606.0 345.22 9579.0 2163.67 6258.11 1179.27

IORA Stack(1) 5 2.0 1 7.0 1.58 24.0 6.63 8.77 1.92

IORA FIFOSet(1) 5 2.0 1 8.0 3.27 31.0 9.36 6.45 0.84

IORA Login(1) 5 3.0 1 33.0 6.65 152.0 29.89 1509.18 477.04
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open-source tester used in [191]2. This produces tests similar to our own, but extended

by distinguishing sequences. These tests are parameterized by both the length of

the random sequence and a factor k. We set both the length and the k factor to

1. We note that our simple tester (which doesn’t append distinguishing sequences)

could not reliably found counterexamples for several of these models. We attribute

this to the large size of the models’ input alphabets. The solver timeout was set to 1

minute.

Table 6.2: Case-study experiments

Model succ states alpha tests inputs time(sec)

size avg std avg std avg std

Biometric Passport 5 6 9 173.0 90.75 848.0 574.57 28.85 3.82

MAESTRO 5 6 14 1159.0 280.78 6193.0 1690.15 330.87 15.33

MasterCard 5 6 14 703.0 192.03 3560.0 1133.96 337.44 80.17

PIN 5 6 14 767.0 188.76 3825.0 1095.39 328.0 41.85

SecureCode 5 4 14 290.0 67.33 1340.0 318.29 82.25 29.46

VISA 5 9 14 839.0 169.53 5005.0 1161.63 1933.03 498.98

PCS 1 5 8 9 704.0 178.94 3861.0 1123.0 201.74 19.68

PCS 2 5 3 9 72.0 7.96 284.0 22.01 8.89 1.3

PCS 3 5 7 9 555.0 175.55 2973.0 1078.96 146.89 21.89

PCS 4 5 7 9 583.0 224.07 3029.0 1626.2 158.33 18.66

PCS 5 5 9 9 1158.0 163.37 6218.0 1165.34 750.83 135.16

PCS 6 5 9 9 778.0 517.2 4087.0 3204.23 735.55 75.77

Results are shown in Table 6.2. Columns are as in the previous experiment, with an

additional column used to describe the size of the input alphabet. Our approach is

able to learn all models, though it takes a considerable amount of time for the larger

models. There are no cases where we cannot learn the model.

Our third experiment pits our approach against LearnLib (v0.12.1) [119] and Tomte

(v0.41) [5]. LearnLib is a known FSM learning framework, while Tomte is a learner

for IORAs. Both LearnLib and Tomte are configured to use TTT, a state-of-the-art

learning algorithm within Angluin’s framework. LearnLib is additionally configured

to use the original L* learning algorithm. The setups for all learners use caching to

ensure that only tests uncovering new observations are included in statistics. We

compare our approach to LearnLib on both the scalable and case study models, and

to Tomte on the scalable models. The testers are the same as in previous experiments.

Due to the high standard deviation, we ran 20 experiments for each benchmark.

A comparison between the learners is drawn in Table 6.3. Our approach needs fewer

tests than L*. However, it requires more inputs on several of the PCS case study

models. This can be attributed to L* being able to learn these systems without

processing any counterexamples. By contrast, L* severely lags behind on the scalable

systems benchmarks, which require a series of counterexamples. Our approach also

largely defeats TTT on these benchmarks, and even on some of the case study models.

2See https://gitlab.science.ru.nl/moerman/Yannakakis

https://gitlab.science.ru.nl/moerman/Yannakakis
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Our approach defeats Tomte on all (admittedly very basic) models. In summary,

although the approach appears less effective than TTT, it is still competitive and

mostly outmatches Tomte and L*.

Table 6.3: Comparison with other learners

Model SMT TTT L* Tomte

tests inputs tests inputs tests inputs tests inputs

Biometric Passport 220 1057 220 941 333 1143

MAESTRO 835 4375 860 4437 1190 4718

MasterCard 839 4379 996 5260 1190 4718

PIN 757 3945 911 4769 1190 4718

SecureCode 313 1485 194 682 798 2758

Visa 796 4770 750 4094 2040 9015

PCS 1 629 3530 417 2179 657 2682

PCS 2 71 279 75 196 252 657

PCS 3 508 2651 476 2472 576 2196

PCS 4 559 3024 451 2297 576 2196

PCS 5 1120 6260 417 1753 1308 5340

PCS 6 1158 6442 457 1977 1308 5340

Mealy FIFOSet(2) 6 27 12 38 14 38

Mealy FIFOSet(7) 52 481 71 588 235 2494

Mealy FIFOSet(10) 179 2152 163 1822 486 6743

Mealy Login(2) 37 214 57 242 57 219

Mealy Login(3) 89 644 120 704 240 1720

IORA Login(1) 33 152 157 580

IORA FIFOSet(1) 9 31 21 36.5

IORA Stack(1) 8.5 33 19 34

A reason to why our approach performs worse than TTT on the case study models

may have to do with how hypotheses are constructed. Hypotheses constructed by

TTT are completed in terms of their output behavior by running new tests. In

contrast, our approach constructs hypotheses solely on the basis of counterexamples.

For states whose output behavior has not yet been covered by counterexamples, the

solver just produces a guess which is likely wrong. This may decrease the efficacy

of test algorithms which actively use output behaviors to compute distinguishing

sequences (as does the algorithm used in the case study models).

We remark that the seemingly better results we achieved on the scalable systems may

be due to their simplistic nature. Having only few inputs, these systems don’t benefit

as much from the smart exploratory tests a learner may execute.

Although the sample size is small, results seem to indicate that whereas FSM learners

are efficient, active register automata learners are yet to reach this level of optimization.

These learners often resort to expensive counterexample analysis procedures in order to

simplify the counterexample, as in shortening it or isolating the relevant data relations.

This simplification is needed in order to minimize the counterexample’s subsequent

impact on the performance of learning. By contrast, our approach does not need such

a procedure. One should note however, that the models our approach can learn lack
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Table 6.4: Learning models without resets. Last two columns show results from [171].

States succ inputs time(sec) inputs time(sec)

avg std avg std avg avg

1 5 2.0 0.0 0.03 0.0 3 0.01

2 5 6.0 9.55 0.13 0.07 9 0.01

3 5 21.0 6.4 0.43 0.11 18 0.01

4 5 47.0 32.9 0.88 0.21 30 0.01

5 5 48.0 21.48 1.89 0.6 43 0.02

6 5 76.0 53.18 12.95 7.7 57 0.05

7 2 71.5 10.61 25.65 2.59 69 0.13

8 1 288.0 0.0 106.35 0.0 83 0.32

succintness (they are unique valued and non-swapping). Consequently, the number of

tests may be adversely affected by the number of registers in a system.

The previous experiment compares our passive learning approach used actively, with

active learning approaches. Readers might wonder how our approach and implementa-

tion perform relative to similar passive learning algorithms. The preliminary version

of our work [192] compares an earlier implementation of our SMT-based approach to

DFASAT [107], which implements an efficient SAT-based algorithm for DFAs. Results

show that our implementation is competitive. These results are very much in line with

those of Neider et al. [162]. Therein, an SMT-based approach for DFAs similar to ours

compares favorably when matched against other passive learning approaches.

Our final experiment assesses our extension for learning systems without resets using

benchmarks from recent related work [171]. These benchmarks involve learning

randomly generated Mealy machines of increasing size with 2 input labels and 2 output

labels. These models are connected though they may not be minimal. We adapted our

random walk algorithm for setting without resets, using a fixed random length of 3.

The solver timeout was set to 10 seconds. Table 6.4 illustrates results. Our extension

performs and scales worse than the approach in [171] (which scales up to models of 11

states) and does not provide any guarantees of correctness. However, being able to

learn such systems by a simple extension showcases the versatility of an SMT-based

approach.

Notes on scalability Scalability is the main weakness of our approach. The

IORA and RA encodings scaled up to only a maximum of size 2 for stacks and

FIFO sets. By comparison, Tomte can learn FIFO sets of size 30 [6]. The Mealy

machine encoding scaled up to a size of 13 for the FIFO set, besting the DFA encoding,

which only managed 9. Learning can take several minutes due to the large number

of times the solver has to be called. Our implementation calls the solver on every

new counterexample, and there can be hundreds of counterexamples in a learning

run.
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We note some of the measures adopted towards improving scalability while maintaining

simplicity of our encodings. These measures largely pertain to how the definitions were

implemented into Z3Py. We initially defined sorts for states, locations, labels, inputs

and outputs using Datatype constructs, which provide a natural representation for

expressing sets. We later found that defining a custom sort by using DeclaredSort was

more efficient (the Mealy machine and DFA FIFO set examples could only scale to 10

and 6 states respectively when using the Datatype formulation). This optimization was

used for the DFA and Mealy machine encodings. We also found that it was often useful

to avoid universal quantifiers (and instead expand them to quantifier-free formulas), in

particular when formulating constraints over nodes. Finally, the time the solver took

to provide a solution increased with the number of nodes in the OT. This number in

turn grows as the tests generated get longer, resulting in longer counterexamples. To

give an example of the implication, configuring the test algorithm of [191] to generate

longer tests using a random sequence of size 2 instead of 1, meant the VISA model

could no longer be learned reliably with a solver timeout of 1 minute.

While some measures where taken to improve scalability, we can definitely see further

room for improvement. In particular, the IORA encodings could be made a lot more

efficient by utilizing a more succint underlying definition. The current definition

requires roughly a doubling of the number of locations, as well as a function to

distinguish between input and output locations. A more succint definition would use

a transducer-style output function, with each transition encoding both input and

output semantics. Another hindering factor is that we still use Datatype constructs

for implementing both RA and IORA encodings.

6.4 Conclusions

We have experimented with an approach for model learning which uses SMT solvers.

The approach is highly versatile, as shown in its adaptations for learning FSMs

and register automata, and for learning without resets. We provide an open source-

tool implementing these adaptations. Experiments indicate that our approach is

competitive with the state-of-the-art. While the approach does not scale well, we have

shown that it can be used for learning small models in practice. In the future we wish

to improve the scalability of the approach via more efficient encodings. We hope this

chapter gives rise to a broader direction of future work, since the presented approach

has several advantages over traditional model learning algorithms. Notably, it appears

to be quite effective for rapid prototyping of learning algorithms for new formalisms

and settings.



Chapter 7

Conclusion

Over the course of this thesis, we have explored two well established model learning

approaches for learning Register Automata. In doing so, we have brought each

approach closer to its applicability in practice. We have also proposed an alternative

approach based on SMT, and shown its effectiveness through a series of experiments.

Finally, we have showcased model learning as a viable means of conformance testing.

To that end, we have provided compelling applications of learning in the context of

two widely used protocols in TCP and SSH. These applications resulted in standard

violations, and a notable bug fix of the Linux kernel. Several steps are still needed

before learning can become widely applicable. This thesis, nevertheless, paves some

steps towards this objective, opening up new opportunities for future research.

7.1 Future Work

State-local automated abstraction refinement One of the key advantages of

automated RA learning using mappers as shown in Chapter 4, is its simplicity and

flexibility over other approaches. The decoupled architecture of Tomte, the reference

tool for this approach, enables us to replace the Mealy machine learner or Lookahead

Oracle implementation by any other. This made it possible to easily connect Tomte to

the TTT learning algorithm [122] provided by the LearnLib framework [123], resulting

in a significant drop in the number of tests. Unfortunately, Tomte’s decoupled nature

does come at a cost. Experiments revealed not only lack of succintness of the models

obtained for larger systems (like the multi-login system with 3 users), but also the

exploding number of tests needed to learn them. We attribute this, in part, to reliance

on a global set of abstractions, which are encoded in the mapper. This means that in

every state, Tomte explores all abstractions instead of only exploring those that are

relevant (like the ones that arose in counterexamples).

Isberner et al. [120] have formulated an algorithm that implements the abstractions at

the local (state) level. Its application resulted in more succint models and fewer tests

needed for learning. The challenge lies in adapting this strategy to the automated

abstraction refinement framework of Tomte, while still keeping the learner as decoupled
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as possible from the mapper. It could be that some integration is required, maybe the

learner will be expected to implement some interface, for example, one that would

give the suffix and the prefix of the current learning test. Such an interface might still

allow easy integration of other FSM learner implementations.

Trees in discrimination trees The tree query approach to learning introduced by

Cassel et al. [58] and adopted in Chapter 5, requires a tighter integration between

the learner and the tree oracle. The learner has to know about the tree structure,

and how different trees are compared, in order to complete its own observation

structure and generate a hypothesis out of it. This makes it unlikely that RALib,

the reference implementation for this approach, will be able to directly benefit from

the extensive framework for FSM learning LearnLib provides. Nevertheless, with

some technical effort, advancements from FSM learning can be incorporated into

RALib. This is particularly true for those relating to the data structure used to store

observations.

RALib builds upon the observation table Angluin introduced [19]. While this provides

for an intuitive way of storing observations, completing it requires a large number

of tests. Many of these tests are not truly needed in order to produce a hypothesis

consistent with the last counterexample. Isberner et al. [122] remarked this much, and

proposed a much more efficient structure for storing observations, in the form of a

discrimination tree. This can lead to a marked decrease in the number of tests for

learning and overall, as witnessed in Chapter 4. The scalability challenges encountered

in the application of RALib to TCP, make a compelling case for adapting RALib so

that it uses discrimination trees to store observations.

Passive learners for active learning We have experienced in Chapter 6 the bene-

fits an SMT-based learning approach can provide, namely, how simple it is to develop

efficient learners for advanced formalisms by just formulating a few SMT encodings.

We also benefited from not having to concern ourselves with counterexamples and

their impact on learning performance. On the flip side, we had to face up to the

poor scalability of our approach. Less elegant and more efficient encodings would go

some way towards improving it. We would have to scale our approach up to machi-

nes of moderate size (RAs with 10-30 states), as that’s the size protocols typically

have.

An alternative would be maintaining the learning framework, but choosing a conven-

tional passive learner instead of an SMT-based one. In other words, perform active

learning using a passive learner. That much was done by Walkinshaw et al. [213],

but applied to conventional FSMs. Within the same setting, it would be interes-

ting to replace the FSM learner by the MINT tool Walkinshaw et al. developed for

learning EFSMs [214,215]. One may also consider developing new passive learning al-

gorithms for EFSMs, which combine the more scalable SAT-based approaches for FSM

inference [106] with the extensive research done on learning EFSMs actively [58].
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Leveraging the white box It can sometimes happen that access to the system’s

code or binary is available. In such cases, techniques such as dynamic taint analysis

could be leveraged. These could give cheap answers (in terms of tests) to questions

such as:

1. What is the message format expected by the machine?

2. What values have been stored on processing the current input?

3. What checks and operations have been applied?

Answering the first question would enable a fully automated learning framework,

which also incorporates interface inference, not just model inference. We mention

Autogram [111], a tool which uses taint analysis to extract input formats from Java

programs. These formats could then be used in learning.

Answers for the follow-up questions could greatly improve scalability of RA learning

techniques. More specifically, in Tomte’s framework we could replace the expensive

lookahead oracle (the memorable value fetcher) by a simple query to a tainting tool,

which would yield the values stored so far without running any tests. Such a tool would

also benefit RALib’s framework, as knowing the memorable values can significantly

reduce the number of tests needed to answer a tree query. Not only that, but it could

also make visible to the learner internal operations, that is, operations which don’t

lead to an immediate output. In particular, it could make visible internal register

updates such as the increment of a variable. Determining that such updates took place

in a black-box setting can be difficult and may be necessary to learn the system.

Finally leveraging techniques such as symbolic execution and fuzzing could help us

develop more effective test algorithms for learning. The advantage of applying these

methods was already shown in previous works [94,145,196].

Case studies Learning can be applied to protocols not yet tackled such as QUIC or

LDAP. Also, as RA learning algorithms progress some of the previous case studies

may be re-visited. In particular, the TCP case study of Chapter 5 involving RALib

could only generate models with a limited alphabet due to poor scalability. With

future advancements in RALib, a larger alphabet may be used for learning. Case

studies where abstract alphabets and a manual mapper were used, such as those on

SSH (see Chapter 3) or TLS (see [181]), could be re-done using an RA learner instead

of an FSM learner. Some of the parameters abstracted away by the mapper, such as

SSH’s sequence number or session identifier, could be extracted from the mapper and

processed automatically by the learner instead. Once an RA model is learned, we can

then verify it against specifications using a model checker adequate for models with

data such as nuXmv [166].
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[86] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager. Source code and data

relevant for the paper ’Combining Model Learning and Model Checking to

Analyze TCP Implementations’. 2017. doi: 10.17026/dans-xhw-8tyc.
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[194] R. Smetsers, P. Fiterău-Broştean, and F. Vaandrager. Model Learning as a

Satisfiability Modulo Theories Problem. To appear in LATA 2018.

[195] R. Smetsers, J. Moerman, and D. N. Jansen. Minimal Separating Sequences for

All Pairs of States, pages 181–193. Springer International Publishing, Cham,

2016.

[196] R. Smetsers, J. Moerman, M. Janssen, and S. Verwer. Complementing model

learning with mutation-based fuzzing. arXiv preprint arXiv:1611.02429, 2016.

http://www.secdev.org/projects/scapy/
http://www.seleniumhq.org/


168 Bibliography

[197] R. Smetsers, M. Volpato, F. Vaandrager, and S. Verwer. Bigger is not always

better: on the quality of hypotheses in active automata learning. In Internatio-

nal Conference on Grammatical Inference, number 12, pages 167–181. JMLR

Workshop and Conference Proceedings 34, 2014.

[198] B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning

from a practical perspective. In Formal Methods for Eternal Networked Software

Systems, volume 6659 of Lecture Notes in Computer Science, pages 256–296.

Springer, 2011.

[199] M. Stoelinga. Fun with FireWire: A comparative study of formal verification

methods applied to the IEEE 1394 root contention protocol. Formal Aspects of

Computing Journal, 14(3):328–337, 2003.

[200] M. Tappler, B. K. Aichernig, and R. Bloem. Model-based testing iot communi-

cation via active automata learning. In 2017 IEEE International Conference

on Software Testing, Verification and Validation (ICST), pages 276–287, March

2017.

[201] Tomte. http://tomte.cs.ru.nl/. Accessed: 2017-09-06.

[202] J. Tretmans. Model-based testing and some steps towards test-based modelling.

In SFM 2011, LNCS, pages 297–326. Springer, 2011.

[203] O. Udrea, C. Lumezanu, and J. Foster. Rule-based static analysis of network

protocol implementations. Inf. and Comp., 206(2-4):130–157, 2008.

[204] V. Ulyantsev and F. Tsarev. Extended finite-state machine induction using

SAT-solver. In Machine Learning and Applications and Workshops (ICMLA),

2011 10th International Conference on, volume 2, pages 346–349. IEEE, 2011.

[205] F. Vaandrager. Model learning. CACM, 60(2):86–95, 2017.

[206] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,

Nov. 1984.

[207] P. van den Bos, R. Smetsers, and F. Vaandrager. Enhancing Automata Learning

by Log-Based Metrics, pages 295–310. Springer International Publishing, Cham,

2016.

[208] P. Verleg. Inferring SSH state machines using protocol state fuzzing. Master’s

thesis, Radboud University, 2016.

[209] S. Verwer. Efficient Identification of Timed Automata — Theory and Practice.

PhD thesis, Delft University of Technology, Mar. 2010.

[210] M. Volpato and J. Tretmans. Active learning of nondeterministic systems from

an ioco perspective. In Leveraging Applications of Formal Methods, Verification

and Validation. Technologies for Mastering Change, pages 220–235. Springer,

2014.

http://tomte.cs.ru.nl/


Bibliography 169

[211] M. Volpato and J. Tretmans. Approximate active learning of nondeterministic

input output transition systems. ECEASST, 72, 2015.

[212] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Reverse

engineering state machines by interactive grammar inference. In 14th Working

Conference on Reverse Engineering (WCRE 2007), pages 209–218, Oct 2007.

[213] N. Walkinshaw, J. Derrick, and Q. Guo. Iterative Refinement of Reverse-

Engineered Models by Model-Based Testing, pages 305–320. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2009.

[214] N. Walkinshaw and M. Hall. Inferring computational state machine models from

program executions. In Software Maintenance and Evolution (ICSME), 2016

IEEE International Conference on, pages 122–132. IEEE, 2016.

[215] N. Walkinshaw, R. Taylor, and J. Derrick. Inferring extended finite state machine

models from software executions. Empirical Software Engineering, 21(3):811–853,

2016.

[216] Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and L. Guo. Biprominer: Automatic

mining of binary protocol features. In 2011 12th International Conference on

Parallel and Distributed Computing, Applications and Technologies, pages 179–

184, Oct 2011.

[217] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang, D. Yao, Y. Zhang,

and L. Guo. A semantics aware approach to automated reverse engineering

unknown protocols. In 2012 20th IEEE International Conference on Network

Protocols (ICNP), pages 1–10, Oct 2012.

[218] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo. Inferring protocol state

machine from network traces: a probabilistic approach. In International Con-

ference on Applied Cryptography and Network Security, pages 1–18. Springer,

2011.

[219] S. Williams. Analysis of the SSH key exchange protocol. In Cryptography and

Coding, volume 7089 of LNCS, pages 356–374. Springer, 2011.

[220] S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer. Active

continuous quality control. In Proceedings of the 16th International ACM Sigsoft

Symposium on Component-based Software Engineering, CBSE ’13, pages 111–120,

New York, NY, USA, 2013. ACM.

[221] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol.

RFC 4252 (Proposed Standard), Jan. 2006.

[222] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC

4254 (Proposed Standard), Jan. 2006.



170 Bibliography

[223] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC

4251 (Proposed Standard), Jan. 2006.

[224] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol.

RFC 4253 (Proposed Standard), Jan. 2006. Updated by RFC 6668.

[225] H. Yoo and T. Shon. Inferring state machine using hybrid teacher. In Internet of

Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart

Data (SmartData), 2016 IEEE International Conference on, pages 504–509.

IEEE, 2016.

[226] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-driven

dynamic invariant discovery. In Proceedings of the 2014 International Symposium

on Software Testing and Analysis, pages 362–372. ACM, 2014.



Curriculum Vitae

Paul Fiterău-Broştean
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